-
摘要: 为了评价LOS声屏障在噪声水平超标较小与住户较少地区的应用效果, 对美国印第安纳州I-465高速公路新型LOS声屏障试验段进行噪声测试与TNM分析, 研究了路面类型、车辆速度、交通量、降噪系数、声屏障高度与声屏障延长对LOS声屏障降噪水平的影响, 评价了LOS声屏障应用效果, 提出了关键设计参数。研究结果表明: LOS声屏障适用于噪音水平超标较小与住户较少的地区; 路面类型对降噪效果影响较大, 将水泥混凝土路面更换为密级配沥青混凝土路面与开级配沥青混凝土路面可以明显提高降噪幅度和降噪有效率; 采用限速方法降低噪音并不明显, 不推荐采用限速的方法提高声屏障降噪效果; LOS声屏障设计时, 设计降噪幅度宜大于6.7dBA, 最低高度应大于路面行驶的大型车辆高度, 最大高度不超过6.6m, 最佳高度由设计年限内降噪效果模拟分析确定。Abstract: In order to evaluate the application effect of line of sight(LOS)sound barrier in the areas with less excessive noise level and fewer households, the noise monitoring and traffic noise model(TNM)analysis at the highway I-465 with LOS sound barrier in Indiana, USA have been done.The influences of pavement type, vehicle speed, traffic volume, noise reduction coefficient, height and extended length of sound barrier on noise reduction level of LOS sound barrier were analyzed, the application effect of LOS sound barrier was evaluated, and the key design parameters were proposed.Analysis result shows that LOS sound barrier can be applied in the areas with less excessive noise level and fewer households.The influence of pavement type on noise reduction is significant.If cement concrete pavement(CCP)is replaced by dense-graded asphalt concrete pavement(DGACP)or open-graded asphalt concrete pavement(OGACP), the range and effective rate of noise reduction can be improved significantly.It is not effective toreduce traffic noise by lowering speed limits, therefore, it is not recommended.For designing LOS sound barrier, the design noise reduction range should be above 6.7dBA, the minimum barrier height should be tall enough to block the view of large vehicle and the maximum barrier height is 6.6m, the optimum height of LOS sound barrier in design year should be determined by traffic noise model analysis.
-
Key words:
- road engineering /
- LOS sound barrier /
- sound-absorbing material /
- traffic noise /
- prediction model
-
表 1 交通量与车辆速度(单车道)
Table 1. Traffic volumes and vehicle speeds(one lane)
表 2 声屏障参数
Table 2. Parameters of sound barriers
表 3 误差分析结果
Table 3. Error analysis result
表 4 不同路面类型的降噪幅度
Table 4. Noise reduction ranges of different pavement types
表 5 设计年限内LOS声屏障的降噪效果
Table 5. Noise reduction effect of LOS sound barrier in design year
表 6 路面类型对LOS声屏障降噪效果的影响
Table 6. Influence of pavement types on noise reduction effect of LOS sound barrier
表 7 车速控制对LOS声屏障降噪效果的影响
Table 7. Influence of speed control on noise reduction effect of LOS sound barrier
表 8 声屏障高度对LOS声屏障降噪效果的影响
Table 8. Influence of height on noise reduction effect of LOS sound barrier
-
[1] 马天山, 樊一江. 交通运输与能源和环境战略研究[J]. 交通运输工程学报, 2008, 8(4): 116-120. doi: 10.3321/j.issn:1671-1637.2008.04.023MA Tian-shan, FAN Yi-jiang. Study of transportation and strategy of energy and environment in China[J]. Journal of Traffic and Transportation Engineering, 2008, 8(4): 116-120. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.04.023 [2] PAMANIKABUD P, TANSATCHA M. Geographical information system for traffic noise analysis and forecasting with the appearance of barriers[J]. Environmental Modelling and Software, 2003, 18(10): 959-973. doi: 10.1016/S1364-8152(03)00097-5 [3] SKARABIS J, STÖCKERT U. Noise emission of concrete pavement surfaces produced by diamond grinding[J]. Journal of Traffic and Transportation Engineering: English Edition, 2015, 2(2): 81-92. doi: 10.1016/j.jtte.2015.02.006 [4] KANG J, BROCKLESBY M W. Feasibility of applying microperforated absorbers in acoustic window systems[J]. Applied Acoustics, 2005, 66(6): 669-689. doi: 10.1016/j.apacoust.2004.06.011 [5] KELLER T, RIEBEL F, VALLÉE T. GFRP posts for railway noise barriers-experimental validation of load-carrying performance and durability[J]. Composite Structures, 2008, 85(2): 116-125. doi: 10.1016/j.compstruct.2007.10.020 [6] JAMRAH A, AL-OMARI A, SHARABI R. Evaluation of traffic noise pollution in Amman, Jordan[J]. Environmental Monitoring and Assessment, 2006, 120(1-3): 499-525. doi: 10.1007/s10661-005-9077-5 [7] BARRATT S D. Barrier provides a clear solution[J]. Public Works, 2005, 136(11): 59-61. [8] ANON. Noise control in practice[J]. Noise and Vibration Worldwide, 1997, 28(2): 10. [9] 陈子明, 王恕铨. 高架复合道路交通噪声的声屏障A计权声插入损失的计算[J]. 环境科学, 1996, 17(6): 27-30. doi: 10.3321/j.issn:0250-3301.1996.06.008CHEN Zi-ming, WANG Shu-quan. Computation of the A-weighted insertion loss for sound barriers used in traffic noise control of elevated complex road[J]. Chinese Journal of Environmental Science, 1996, 17(6): 27-30. (in Chinese). doi: 10.3321/j.issn:0250-3301.1996.06.008 [10] 卢洋, 蒋中锐. 屏体吸声性能对道路声屏障插入损失的影响[J]. 环境影响评价, 2015, 37(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHS201501028.htmLU Yang, JIANG Zhong-rui. The influence of sound absorptive surface to the performance of noise barrier[J]. Environmental Impact Assessment, 2015, 37(1): 92-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXHS201501028.htm [11] BAULAC M, DEFRANCE J, JEAN P. Optimisation with genetic algorithm of the acoustic performance of T-shaped noise barriers with a reactive top surface[J]. Applied Acoustics, 2008, 69(4): 332-342. doi: 10.1016/j.apacoust.2006.11.002 [12] BAULAC M, DEFRANCE J, JEAN P. Optimization of multiple edge barriers with genetic algorithms coupled with a NelderMead local search[J]. Journal of Sound and Vibration, 2007, 300(1/2): 71-87. [13] BAULAC M, DEFRANCE J, JEAN P, et al. Efficiency of noise protections in urban areas: predictions and scale model measurements[J]. Acta Acustica United with Acustica, 2006, 92(4): 530-539. [14] KASTKA J, BUCHTA E, RITTERSTAEDT U, et al. Long term effect of noise protection barriers on the annoyance response of residents[J]. Journal of Sound and Vibration, 1995, 184(5): 823-852. doi: 10.1006/jsvi.1995.0348 [15] ZOU Hai-shan, QIU Xiao-jun, LU Jing, et al. A preliminary experimental study on virtual sound barrier system[J]. Journal of Sound and Vibration, 2007, 307(1/2): 379-385. [16] ROMICK-ALLEN R K, LIN C, MORGAN S M, et al. Fitting the FHWA traffic noise model noise emissions for use in STAMINA 2.0[J]. Transportation Research Record, 1999(1670): 59-68. [17] MENGE C W, ANDERSON G S, ROSSANO C F. Barrier diffraction and sound propagation in USDOT's new traffic noise model[J]. Proceedings-National Conference on Noise Control Engineering, 1996, 2: 827-832. [18] EI-AASSAR A A, WAYSON R L, MACDONALD J M. Comparison of traffic noise model 2.5with 2.1and measured data[J]. Transportation Research Record, 2005(1941): 149-154. [19] LEE C S Y, FLEMING G G, RAPOZA A S. FHWA traffic noise model, version 1.0-REMEL data base[J]. ProceedingsNational Conference on Noise Control Engineering, 1996, 2: 833-836. [20] COHN L F, HARRIS R A. Comparing traffic-noise model accuracy using state-specific emission data[J]. Journal of Urban Planning and Development, 2001, 127(2): 79-93.