-
摘要: 考虑了车辆导向轮对一侧轴箱钢簧出现失效的四种工况: 钢簧内外圈均断裂、外圈断裂、内圈断裂和钢簧“冻死”, 建立了钢簧失效工况下的车辆系统动力学模型, 分析了钢簧失效对车辆动力学性能的影响。仿真结果表明: 钢簧失效后, 轮对的平衡位置偏离轨道中心线, 全断裂工况下偏离最大, 约为3mm; 车辆的临界速度降低, 全断裂工况下降低最大, 约为30km·h-1;失效弹簧所在轮对的轮载差变化较大, 全断裂工况下轮载差最大, 约为50kN; 转向架断裂弹簧处及其斜对角轴箱悬挂垂向力将减小, 另一对角处的轴箱悬挂垂向力将增大, 从而使转向架承受较大的扭曲载荷; 钢簧失效很容易使脱轨系数和轮重减载率等安全性指标超过限定值, 增加了车辆运行安全的隐患, 在直线上200~300km·h-1速度范围内和曲线(半径为7 000m)上100~300km·h-1速度范围内, 全断裂工况下的减载率都超过0.8;钢簧失效对车辆横向平稳性影响不大, 但钢簧“冻死”会使垂向平稳性变差, 相对于正常工况, 在300km·h-1时增加约0.1。Abstract: Four failure cases of axlebox steel spring for one side of leading wheelset were considered, namely: the inner and outer rings of steel spring both fractured; just the outer ring fractured; just the inner ring fractured; the whole spring frozen.Then vehicle dynamics model considering the failure cases was set up, and the influence of spring failure on vehicle dynamics performance was analyzed.Simulation result indicates that when the spring is in failure conditions, the equilibrium positions of wheelsets deviate from track center line, the critical speeds of vehicle reduce, the deviation and decrease are largest when the inner and outer rings of steel spring both fracture, and their largest values are about 3mm and 30km·h-1 respectively.The wheelset with failure spring has larger wheel unloading, the value is largest in the both fractured case and is about 50 kN.For the bogie, the vertical suspension forces decrease at the positions of failure spring and its diagonal axle box, while the vertical suspension forces increase at the positions of another diagonal axle boxes, which results in large torsion force acting on the bogie.Spring fracture more easily brings the safety indexes(such as derailment coefficient and wheel unloading rate)to exceed their limit values, which greatly increases the safety risk of vehicle operation.When the ranges of speed are 200-300km·h-1 on straight track and 100-300km·h-1 oncurved track with radius 7 000 m, wheel unloading rates in both fractured case are greater than 0.8.The spring failure has little influence on the lateral riding performance of vehicle, but spring frozen failure will worsen the vertical riding performance of vehicle, and it increases by 0.1when vehicle speed is 300km·h-1 compared with normal vehicle.
-
Key words:
- high-speed train /
- steel spring failure /
- dynamics model /
- dynamics performance
-
表 1 天气状况
Table 1. Weather conditions
表 2 仿真参数
Table 2. Simulation parameters
表 3 临界速度比较
Table 3. Comparison of critical speeds km·h-1
-
[1] AKKAM, AY D, METĪN AKSU N, et al. 10-year evaluation of train accidents[J]. Turkish Journal of Trauma and Emergency Surgery, 2011, 17(5): 440-444. doi: 10.5505/tjtes.2011.66750 [2] MCCOLLISTER G M, PFLAUM C C. A model to predict the probability of highway rail crossing accidents[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221(3): 321-329. doi: 10.1243/09544097JRRT84 [3] LIU Xiang, SAAT M R, BARKAN C P L. Analysis of causes of major train derailment and their effect on accident rates[J]. Transportation Research Record, 2012(2289): 154-163. [4] 孙永福. "7·23"旅客列车事故的重要启示[J]. 中国工程科学, 2012, 14(12): 4-9. doi: 10.3969/j.issn.1009-1742.2012.12.003SUN Yong-fu. The important revelation of "7·23" passenger train accident[J]. Engineering Sciences, 2012, 14(12): 4-9. (in Chinese). doi: 10.3969/j.issn.1009-1742.2012.12.003 [5] 秦艳敏. 列车安全监测系统关键技术的研究[D]. 成都: 西南交通大学, 2006.QIN Yan-min. Research on key technology of train running safety monitoring system[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese). [6] 李忠继, 魏来, 戴焕云, 等. 基于Hilbert-Huang变换的车轮扁疤识别方法[J]. 交通运输工程学报, 2012, 12(4): 33-41. doi: 10.3969/j.issn.1671-1637.2012.04.005LI Zhong-ji, WEI Lai, DAI Huan-yun, et al. Identification method of wheel flat based on Hilbert-Huang transform[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 33-41. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.04.005 [7] 朴明伟, 孔维刚, 刘通, 等. 基于抗蛇行减振器失效工况的高速转向架稳定性分析[J]. 大连交通大学学报, 2011, 32(4): 1-5. doi: 10.3969/j.issn.1673-9590.2011.04.001PIAO Ming-wei, KONG Wei-gang, LIU Tong, et al. Stability analyses of high-speed bogie based on anti-hunting damper failures[J]. Journal of Dalian Jiaotong University, 2011, 32(4): 1-5. (in Chinese). doi: 10.3969/j.issn.1673-9590.2011.04.001 [8] 秦娜, 王开云, 金炜东, 等. 高速列车转向架故障的经验模态熵特征分析[J]. 交通运输工程学报, 2014, 14(1): 57-64, 74. doi: 10.3969/j.issn.1671-1637.2014.01.010QIN Na, WANG Kai-yun, JIN Wei-dong, et al. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 57-64, 74. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.01.010 [9] 徐石桂, 梁益龙. 地铁弹簧断裂失效分析[J]. 热加工工艺, 2014, 43(6): 224-225, 212. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201406074.htmXU Shi-gui, LIANG Yi-long. Cracking failure analysis of subway spring[J]. Hot Working Technology, 2014, 43(6): 224-225, 212. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201406074.htm [10] 刘海兰, 陈智江, 王华炜, 等. 机车弹簧断裂原因分析[J]. 电力机车与城轨车辆, 2010, 33(5): 58, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201005023.htmLIU Hai-lan, CHEN Zhi-jiang, WANG Hua-wei, et al. Fracture reason analysis of locomotive spring[J]. Electric Locomotives and Mass Transit Vehicles, 2010, 33(5): 58, 60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201005023.htm [11] 赵勇. 转K2转向架弹簧失效分析[D]. 成都: 西南交通大学, 2006.ZHAO Yong. Failure analysis of K2type bogie springs[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese). [12] DAS S K, MUKHOPADHYAY N K, RAVI KUMAR B, et al. Failure analysis of a passenger car coil spring[J]. Engineering Failure Analysis, 2007, 14(1): 158-163. doi: 10.1016/j.engfailanal.2005.11.012 [13] 严琰, 赵飞, 任永海, 等. 高速铁路机车用弹簧失效分析[J]. 热加工工艺, 2012, 41(22): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201222068.htmYAN Yan, ZHAO Fei, REN Yong-hai, et al. Failure analysis on spring used in high-speed railway locomotive[J]. Hot Working Technology, 2012, 41(22): 232-234. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201222068.htm [14] 凌坤坤, 李向聪. 悬挂系统故障情况下的车体静平衡分析[J]. 佳木斯大学学报: 自然科学版, 2011, 29(6): 814-816, 823. doi: 10.3969/j.issn.1008-1402.2011.06.005LING Kun-kun, LI Xiang-cong. The static equilibrium analysis of car body under the failure of suspension system[J]. Journal of Jiamusi University: Natural Science Edition, 2011, 29(6): 814-816, 823. (in Chinese). doi: 10.3969/j.issn.1008-1402.2011.06.005 [15] 魏瑞轩, 韩崇昭, 王永昌, 等. 减震弹簧失效诊断系统的设计[J]. 弹箭与制导学报, 2003, 23(4): 238-240. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD2003S5046.htmWEI Rui-xuan, HAN Chong-zhao, WANG Yong-chang, et al. Design of fault diagnosis system for damping spring[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003, 23(4): 238-240. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD2003S5046.htm [16] 王朝晖, 张来斌, 郭存杰, 等. 包络解调法在气阀弹簧失效故障诊断中的应用[J]. 石油大学学报: 自然科学版, 2005, 29(2): 86-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200502021.htmWANG Zhao-hui, ZHANG Lai-bin, GUO Cun-jie, et al. Application of envelope demodulation method to fault diagnosis of spring invalidation[J]. Journal of the University of Petroleum, China: Edition of Natural Science, 2005, 29(2): 86-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200502021.htm [17] KUMBHALKAR M A, YENARKAR Y L, GROVER A K. Failure analysis of inner suspension spring of railway engine: a case study[C]∥AMAE. International Conferences on Advances in Robotic, Mechanical Engineering and Design 2011. Los Angeles: AMAE, 2011: 12-16. [18] PRIYANKA G, SHANKAPAL S R, MONISH G M H. Failure investigation of a freight locomotive suspension spring and redesign of the spring for durability and ride index[J]. The Technical Journal of MSRSAS, 2012, 11(2): 23-29. [19] DAKHORE M, BISSA B. Failure of locomotive suspension coil spring using finite element analysis[J]. International Monthly Refereed Journal of Research in Management and Technology, 2013, 2: 96-104. [20] KUMAR K P, KUMAR S P, MAHESH G G. Static analysis of a primary suspension spring used in locomotive[J]. International Journal of Mechanical Engineering and Robotics Research, 2013, 2(4): 430-436. [21] 朴明伟, 张山, 刘维玉, 等. 高寒地区高铁运用安全冗余及其转向架优配解决方案[J]. 计算机辅助工程, 2013, 22(6): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201306006.htmPIAO Ming-wei, ZHANG Shan, LIU Wei-yu, et al. Safety redundancy of high speed rail operation in alpine region and optimal bogie configuration solution[J]. Computer Aided Engineering, 2013, 22(6): 28-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201306006.htm [22] 郑彦涛. 基于层次分析法的CRH380B动车组维修可靠性分析与研究[D]. 北京: 清华大学, 2013.ZHENG Yan-tao. Hierarchy analysis based maintenance reliability for CRH380Bseries electric motor units[D]. Beijing: Tsinghua University, 2013. (in Chinese). [23] BETTEZ M. Winter technologies for high speed rail[D]. Trondheim: Norwegian University of Science and Technology, 2011.