-
摘要: 在动车轴箱下方安装防护装置, 进行线路低速脱轨试验。车辆借助脱轨器完成脱轨, 利用应变片、加速度和位移传感器采集脱轨车辆的动态响应, 采用高速摄像仪和视频摄像仪分别记录了脱轨车辆的运动姿态。基于试验数据, 评估了脱轨条件下钢轨抗倾翻能力, 验证了脱轨安全防护装置的性能, 分析了动车脱轨后的动态响应和脱轨速度、车辆质量和线路对动态响应的影响。试验结果表明: 当动车低速脱轨时, 防护装置撞击钢轨的最大横向力为177.18kN, 小于钢轨横向抵抗力510.00kN, 因此, 脱轨安全防护装置可以扣住钢轨外侧, 有效限制脱轨车辆的横向移动。车辆的脱轨过程分为惰行、轨上运动、落地和路基滑行4个阶段, 各阶段的动态响应均随脱轨速度和车辆质量的增大而增大。当动车脱轨速度为22km·h-1时, CRTSⅡ型双块式无砟轨道的脱轨距离约为15.80m, CRTSⅠ型板式无砟轨道的脱轨距离约为20.87m, 因此, CRTSⅡ型双块式无砟轨道的轨枕可以起到减速带的作用, 减小脱轨距离。Abstract: The low-speed derailment experiment of signal motor vehicle with post-derailment safety device under axle box was carried out.The derailer was installed on the rail to force the vehicle to derail.Acceleration sensors, displacement sensors and strain gauges were used to detect the dynamic responses of derailed vehicle.The motion attitude of derailed vehicle was recorded by using high-speed cameras and surveillance cameras.According to the test data, the ability of overturning resistance for rail and the performance of derailment safety device were verified.The dynamic responses of derailed vehicle and the effects of derailment speed, vehicle mass and track on the responses were studied.Test result indicates that in low-speed derailment, the biggest lateral force between rail and post-derailment safety device is 177.18 kN that is less than the lateral resistance of 510.00 kN, so the post-derailment safety device has the ability to limit the lateral displacement of derailed vehicle by catching the outside of rail after derailment.The derailment process is divided into four stages, including idling, running on the derailer, falling and coasting on the track, at which the dynamic responses of derailed vehicle are increasingwith the increase of derailment speed and vehicle mass.When derailment speed is 22km·h-1, the derailment distance of CRTSⅡ bi-block sleepers ballastless track is about 15.80 m, while that of CRTSⅠ slab ballastless track is about 20.87 m.Accordingly, the bi-block sleepers of CRTSⅡ bi-block sleepers ballastless track resemble the speed bump and decrease the derailment distance.
-
表 1 试验车辆主要技术参数
Table 1. Main technical parameters of test vehicle
表 2 不同工况防护装置最大动应力
Table 2. Maximum dynamic stresses of protective device under different conditions
表 3 试验工况
Table 3. Test conditions
表 4 不同工况下各承载件的强度和冲击容限
Table 4. Strengths and impact tolerances of each carrier under different conditions
-
[1] 向俊, 周智辉, 曾庆元. 列车脱轨研究最新进展[J]. 铁道科学与工程学报, 2005, 2(5): 1-8. doi: 10.3969/j.issn.1672-7029.2005.05.001XIANG Jun, ZHOU Zhi-hui, ZENG Qing-yuan. Recent developments in train derailment research[J]. Journal of Railway Science and Engineering, 2005, 2(5): 1-8. (in Chinese). doi: 10.3969/j.issn.1672-7029.2005.05.001 [2] 王开云, 王少林, 杨久川, 等. 地震环境下铁路轮轨动态安全性能及脱轨研究进展[J]. 地震工程与工程振动, 2012, 32(6): 82-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201206011.htmWANG Kai-yun, WANG Shao-lin, YANG Jiu-chuan, et al. Progress in study on wheel/rail dynamic safety and derailment of railway during an earthquake[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(6): 82-94. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201206011.htm [3] 阳建鸣, 刘春雨. 日本上越新干线列车脱轨事故探究[J]. 中国铁路, 2006(8): 42-45. doi: 10.3969/j.issn.1001-683X.2006.08.013YANG Jian-ming, LIU Chun-yu. Research on derail accident on Jyoetsu-Shinkansen[J]. Chinese Railways, 2006(8): 42-45. (in Chinese). doi: 10.3969/j.issn.1001-683X.2006.08.013 [4] 金学松, 郭俊, 肖新标, 等. 高速列车安全运行研究的关键科学问题[J]. 工程力学, 2009, 26(增II): 8-22, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2009S2004.htmJIN Xue-song, GUO Jun, XIAO Xin-biao, et al. Key scientific problems in the study on running safety of high speed trains[J]. Engineering Mechanics, 2009, 26(SII): 8-22, 105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2009S2004.htm [5] 周诗广, 郑健. 日本高速铁路的地震对策[J]. 铁道工程学报, 2008(增2): 35-43.ZHOU Shi-guang, ZHENG Jian. Earthquake countermeasures of Japan's high-speed railway[J]. Journal of Railway Engineering Society, 2008(S2): 35-43. (in Chinese). [6] 肖新标. 复杂环境状态下高速列车脱轨机理研究[D]. 成都: 西南交通大学, 2013.XIAO Xin-biao. Study on high-speed train derailment mechanism in severe environment[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese). [7] BRABIE D, ANDERSSON E. Dynamic simulation of derailments and its consequences[J]. Vehicle System Dynamics, 2006, 44(S1): 652-662. [8] BRABIE D, ANDERSSON E. Post-derailment dynamic simulation of rail vehicles-methodology and applications[J]. Vehicle System Dynamics, 2008, 46(S1): 289-300. [9] BRABIE D, ANDERSSON E. An overview of some highspeed train derailments: means of minimizing consequences based on empirical observations[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(4): 441-463. doi: 10.1243/09544097JRRT149 [10] BRABIE D, ANDERSSON E. On minimizing derailment risks and consequences for passenger trains at higher speeds[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 543-566. doi: 10.1243/09544097JRRT271 [11] KAJITANI Y, KATO H, ASANO K. Development of a L-shaped guide to prevent deviation from rails[J]. JR East Technical Review, 2010(15): 53-56. http://www.jreast.co.jp.cache.yimg.jp/e/development/tech/pdf_15/Tec-15-53-56eng.pdf [12] NISHIMURA, K, TERUMICHI Y, MORIMURA T, et al. Development of vehicle dynamics simulation for safety analyses of rail vehicles on excited tracks[J]. Journal of Computational and Nonlinear Dynamics, 2009, 4(1): 1-9. [13] SUNAMI H, MORIMURA T, TERUMICHI Y, et al. Model for analysis of bogie frame motion under derailment conditions based on full-scale running tests[J]. Multibody System Dynamics, 2012, 27(3): 321-349. doi: 10.1007/s11044-011-9288-1 [14] 杨春雷, 翟婉明. 车辆动力学仿真中评判脱轨的直接方法[J]. 交通运输工程学报, 2002, 2(3): 23-26. http://transport.chd.edu.cn/article/id/200203005YANG Chun-lei, ZHAI Wan-ming. Directmethod for evaluation of wheel derailment in simulation of railway vehicle dynamics[J]. Journal of Traffic and Transportation Engineering, 2002, 2(3): 23-26. (in Chinese). http://transport.chd.edu.cn/article/id/200203005 [15] WANG Wei, DING Jie-xiong. Research on dynamical derailment system for CRH[J]. Engineering Sciences, 2011, 9(4): 51-54. [16] 楚永萍, 韩玉忠, 宫相太, 等. 铁路客车防溜逸颠覆导向挡板研究[J]. 中国铁道科学, 2012, 33(增1): 127-131.CHU Yong-ping, HAN Yu-zhong, GONG Xiang-tai, et al. Research on the guide baffle against runaway and subversion of railway passenger car[J]. China Railway Science, 2012, 33(Sl): 127-131. (in Chinese). [17] WU Xing-wen, CHI Mao-ru, GAO Hao, et al. Post-derailment dynamic behavior of railway vehicles travelling on a railway bridge during an earthquake[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, DOI: 10.1177/0954409714543338. [18] WU Xing-wen, CHI Mao-ru, GAO Hao. The study of postderailment dynamic behavior of railway vehicle based on running tests[J]. Engineering Failure Analysis, 2014, 44: 382-399. [19] WU Xing-wen, CHI Mao-ru, GAO Hao, et al. The study of post-derailment measures to limit the extent of a derailment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, DOI: 10.1177/0954409714526586. [20] 王伟. 高速车辆脱轨非线性动力学及其动态仿真[D]. 哈尔滨: 哈尔滨工业大学, 2009.WANG Wei. Dynamical simulation of highspeed vehicle derailment and its nonlinear dynamical[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese). [21] 向俊, 曾庆元. 列车-轨道(桥梁)时变系统横向振动稳定性与失稳临界车速分析方法[J]. 交通运输工程学报, 2011, 11(1): 19-24. http://transport.chd.edu.cn/article/id/201101004XIANG Jun, ZENG Qing-yuan. Analysis method of stability and critical speed for train-track(bridge)time-variable system under lateral vibration condition[J]. Journal of Traffic and Transportation Engineering, 2011, 11(1): 19-24. (in Chinese). http://transport.chd.edu.cn/article/id/201101004 [22] 于春华. 铁路钢轨扣件发展综述[J]. 铁道标准设计, 2006(增): 188-191. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS2006S1055.htmYU Chun-hua. Summary for development of railway steel track fastenings[J]. Railway Standard Design, 2006(S): 188-191. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS2006S1055.htm [23] 辛学忠, 吴克俭. 铁路客运专线无碴轨道扣件探讨[J]. 铁道工程学报, 2006(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200602003.htmXIN Xue-zhong, WU Ke-jian. Exploration on rail fastenings for ballastless track of passenger dedicated railway line[J]. Journal of Railway Engineering Society, 2006(2): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200602003.htm [24] 伍曾, 李洁青, 黄伟, 等. WJ-7型无砟轨道扣件扣压力损失的室温蠕变试验研究[J]. 铁道标准设计, 2014, 58(8): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201408016.htmWU Zeng, LI Jie-qing, HUANG Wei, et al. Experiment research on room temperature creep affecting clamping force loss of WJ-7type ballastless track fastener[J]. Railway Standard Design, 2014, 58(8): 60-63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201408016.htm [25] WANG Kai-yun, HUANG Chao, ZHAI Wan-ming, et al. Progress on wheel-rail dynamic performance of railway curve negotiation[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 209-220.