留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动车低速脱轨的动态响应

郭力荣 王开云 王惠琼 张兵 林建辉

郭力荣, 王开云, 王惠琼, 张兵, 林建辉. 动车低速脱轨的动态响应[J]. 交通运输工程学报, 2015, 15(4): 52-60. doi: 10.19818/j.cnki.1671-1637.2015.04.007
引用本文: 郭力荣, 王开云, 王惠琼, 张兵, 林建辉. 动车低速脱轨的动态响应[J]. 交通运输工程学报, 2015, 15(4): 52-60. doi: 10.19818/j.cnki.1671-1637.2015.04.007
GUO Li-rong, WANG Kai-yun, WANG Hui-qiong, ZHANG Bing, LIN Jian-hui. Dynamic responses of motor vehicle in low-speed derailment[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 52-60. doi: 10.19818/j.cnki.1671-1637.2015.04.007
Citation: GUO Li-rong, WANG Kai-yun, WANG Hui-qiong, ZHANG Bing, LIN Jian-hui. Dynamic responses of motor vehicle in low-speed derailment[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 52-60. doi: 10.19818/j.cnki.1671-1637.2015.04.007

动车低速脱轨的动态响应

doi: 10.19818/j.cnki.1671-1637.2015.04.007
基金项目: 

国家自然科学基金项目 51405400

国家973计划项目 2013CB036206

高等学校博士学科点专项科研基金项目 20110184120004

详细信息
    作者简介:

    郭力荣(1990-), 男, 甘肃甘谷人, 西南交通大学工学博士研究生, 从事车辆动力学研究

    王开云(1974-), 男, 江西萍乡人, 西南交通大学教授, 工学博士

  • 中图分类号: U270.11

Dynamic responses of motor vehicle in low-speed derailment

More Information
    Author Bio:

    GUO Li-rong(1990-), male, doctoral student, +86-28-87600773, jd_glr@163.comjd_glr@163.com

    WANG Kai-yun(1974-), male, professor, PhD, +86-28-87600773, kywang@swjtu.edu.cn

  • 摘要: 在动车轴箱下方安装防护装置, 进行线路低速脱轨试验。车辆借助脱轨器完成脱轨, 利用应变片、加速度和位移传感器采集脱轨车辆的动态响应, 采用高速摄像仪和视频摄像仪分别记录了脱轨车辆的运动姿态。基于试验数据, 评估了脱轨条件下钢轨抗倾翻能力, 验证了脱轨安全防护装置的性能, 分析了动车脱轨后的动态响应和脱轨速度、车辆质量和线路对动态响应的影响。试验结果表明: 当动车低速脱轨时, 防护装置撞击钢轨的最大横向力为177.18kN, 小于钢轨横向抵抗力510.00kN, 因此, 脱轨安全防护装置可以扣住钢轨外侧, 有效限制脱轨车辆的横向移动。车辆的脱轨过程分为惰行、轨上运动、落地和路基滑行4个阶段, 各阶段的动态响应均随脱轨速度和车辆质量的增大而增大。当动车脱轨速度为22km·h-1时, CRTSⅡ型双块式无砟轨道的脱轨距离约为15.80m, CRTSⅠ型板式无砟轨道的脱轨距离约为20.87m, 因此, CRTSⅡ型双块式无砟轨道的轨枕可以起到减速带的作用, 减小脱轨距离。

     

  • 图  1  防护装置工作原理

    Figure  1.  Working principle of derailment safety device

    图  2  试验线路

    Figure  2.  Test line

    图  3  脱轨器

    Figure  3.  Derailer

    图  4  脱轨过程

    Figure  4.  Derailment process

    图  5  加速度响应

    Figure  5.  Acceleration responses

    图  6  位移响应

    Figure  6.  Displacement responses

    图  7  动应力响应

    Figure  7.  Dynamic stresses responses

    图  8  车辆脱轨后运行轨迹

    Figure  8.  Running track of vehicle after derailment

    图  9  防护装置作用于钢轨

    Figure  9.  Protective device acting on rail

    图  10  CRTSⅡ型轨道的碰撞情况

    Figure  10.  Collision situation of CRTSⅡtrack

    图  11  CRTSⅠ型轨道的碰撞情况

    Figure  11.  Collision situation of CRTSⅠtrack

    图  12  钢轨横向力

    Figure  12.  Rail lateral forces

    图  13  破坏情况

    Figure  13.  Damaged condition

    表  1  试验车辆主要技术参数

    Table  1.   Main technical parameters of test vehicle

    表  2  不同工况防护装置最大动应力

    Table  2.   Maximum dynamic stresses of protective device under different conditions

    表  3  试验工况

    Table  3.   Test conditions

    表  4  不同工况下各承载件的强度和冲击容限

    Table  4.   Strengths and impact tolerances of each carrier under different conditions

  • [1] 向俊, 周智辉, 曾庆元. 列车脱轨研究最新进展[J]. 铁道科学与工程学报, 2005, 2(5): 1-8. doi: 10.3969/j.issn.1672-7029.2005.05.001

    XIANG Jun, ZHOU Zhi-hui, ZENG Qing-yuan. Recent developments in train derailment research[J]. Journal of Railway Science and Engineering, 2005, 2(5): 1-8. (in Chinese). doi: 10.3969/j.issn.1672-7029.2005.05.001
    [2] 王开云, 王少林, 杨久川, 等. 地震环境下铁路轮轨动态安全性能及脱轨研究进展[J]. 地震工程与工程振动, 2012, 32(6): 82-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201206011.htm

    WANG Kai-yun, WANG Shao-lin, YANG Jiu-chuan, et al. Progress in study on wheel/rail dynamic safety and derailment of railway during an earthquake[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(6): 82-94. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201206011.htm
    [3] 阳建鸣, 刘春雨. 日本上越新干线列车脱轨事故探究[J]. 中国铁路, 2006(8): 42-45. doi: 10.3969/j.issn.1001-683X.2006.08.013

    YANG Jian-ming, LIU Chun-yu. Research on derail accident on Jyoetsu-Shinkansen[J]. Chinese Railways, 2006(8): 42-45. (in Chinese). doi: 10.3969/j.issn.1001-683X.2006.08.013
    [4] 金学松, 郭俊, 肖新标, 等. 高速列车安全运行研究的关键科学问题[J]. 工程力学, 2009, 26(增II): 8-22, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2009S2004.htm

    JIN Xue-song, GUO Jun, XIAO Xin-biao, et al. Key scientific problems in the study on running safety of high speed trains[J]. Engineering Mechanics, 2009, 26(SII): 8-22, 105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2009S2004.htm
    [5] 周诗广, 郑健. 日本高速铁路的地震对策[J]. 铁道工程学报, 2008(增2): 35-43.

    ZHOU Shi-guang, ZHENG Jian. Earthquake countermeasures of Japan's high-speed railway[J]. Journal of Railway Engineering Society, 2008(S2): 35-43. (in Chinese).
    [6] 肖新标. 复杂环境状态下高速列车脱轨机理研究[D]. 成都: 西南交通大学, 2013.

    XIAO Xin-biao. Study on high-speed train derailment mechanism in severe environment[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese).
    [7] BRABIE D, ANDERSSON E. Dynamic simulation of derailments and its consequences[J]. Vehicle System Dynamics, 2006, 44(S1): 652-662.
    [8] BRABIE D, ANDERSSON E. Post-derailment dynamic simulation of rail vehicles-methodology and applications[J]. Vehicle System Dynamics, 2008, 46(S1): 289-300.
    [9] BRABIE D, ANDERSSON E. An overview of some highspeed train derailments: means of minimizing consequences based on empirical observations[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(4): 441-463. doi: 10.1243/09544097JRRT149
    [10] BRABIE D, ANDERSSON E. On minimizing derailment risks and consequences for passenger trains at higher speeds[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 543-566. doi: 10.1243/09544097JRRT271
    [11] KAJITANI Y, KATO H, ASANO K. Development of a L-shaped guide to prevent deviation from rails[J]. JR East Technical Review, 2010(15): 53-56. http://www.jreast.co.jp.cache.yimg.jp/e/development/tech/pdf_15/Tec-15-53-56eng.pdf
    [12] NISHIMURA, K, TERUMICHI Y, MORIMURA T, et al. Development of vehicle dynamics simulation for safety analyses of rail vehicles on excited tracks[J]. Journal of Computational and Nonlinear Dynamics, 2009, 4(1): 1-9.
    [13] SUNAMI H, MORIMURA T, TERUMICHI Y, et al. Model for analysis of bogie frame motion under derailment conditions based on full-scale running tests[J]. Multibody System Dynamics, 2012, 27(3): 321-349. doi: 10.1007/s11044-011-9288-1
    [14] 杨春雷, 翟婉明. 车辆动力学仿真中评判脱轨的直接方法[J]. 交通运输工程学报, 2002, 2(3): 23-26. http://transport.chd.edu.cn/article/id/200203005

    YANG Chun-lei, ZHAI Wan-ming. Directmethod for evaluation of wheel derailment in simulation of railway vehicle dynamics[J]. Journal of Traffic and Transportation Engineering, 2002, 2(3): 23-26. (in Chinese). http://transport.chd.edu.cn/article/id/200203005
    [15] WANG Wei, DING Jie-xiong. Research on dynamical derailment system for CRH[J]. Engineering Sciences, 2011, 9(4): 51-54.
    [16] 楚永萍, 韩玉忠, 宫相太, 等. 铁路客车防溜逸颠覆导向挡板研究[J]. 中国铁道科学, 2012, 33(增1): 127-131.

    CHU Yong-ping, HAN Yu-zhong, GONG Xiang-tai, et al. Research on the guide baffle against runaway and subversion of railway passenger car[J]. China Railway Science, 2012, 33(Sl): 127-131. (in Chinese).
    [17] WU Xing-wen, CHI Mao-ru, GAO Hao, et al. Post-derailment dynamic behavior of railway vehicles travelling on a railway bridge during an earthquake[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, DOI: 10.1177/0954409714543338.
    [18] WU Xing-wen, CHI Mao-ru, GAO Hao. The study of postderailment dynamic behavior of railway vehicle based on running tests[J]. Engineering Failure Analysis, 2014, 44: 382-399.
    [19] WU Xing-wen, CHI Mao-ru, GAO Hao, et al. The study of post-derailment measures to limit the extent of a derailment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, DOI: 10.1177/0954409714526586.
    [20] 王伟. 高速车辆脱轨非线性动力学及其动态仿真[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    WANG Wei. Dynamical simulation of highspeed vehicle derailment and its nonlinear dynamical[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese).
    [21] 向俊, 曾庆元. 列车-轨道(桥梁)时变系统横向振动稳定性与失稳临界车速分析方法[J]. 交通运输工程学报, 2011, 11(1): 19-24. http://transport.chd.edu.cn/article/id/201101004

    XIANG Jun, ZENG Qing-yuan. Analysis method of stability and critical speed for train-track(bridge)time-variable system under lateral vibration condition[J]. Journal of Traffic and Transportation Engineering, 2011, 11(1): 19-24. (in Chinese). http://transport.chd.edu.cn/article/id/201101004
    [22] 于春华. 铁路钢轨扣件发展综述[J]. 铁道标准设计, 2006(增): 188-191. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS2006S1055.htm

    YU Chun-hua. Summary for development of railway steel track fastenings[J]. Railway Standard Design, 2006(S): 188-191. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS2006S1055.htm
    [23] 辛学忠, 吴克俭. 铁路客运专线无碴轨道扣件探讨[J]. 铁道工程学报, 2006(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200602003.htm

    XIN Xue-zhong, WU Ke-jian. Exploration on rail fastenings for ballastless track of passenger dedicated railway line[J]. Journal of Railway Engineering Society, 2006(2): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200602003.htm
    [24] 伍曾, 李洁青, 黄伟, 等. WJ-7型无砟轨道扣件扣压力损失的室温蠕变试验研究[J]. 铁道标准设计, 2014, 58(8): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201408016.htm

    WU Zeng, LI Jie-qing, HUANG Wei, et al. Experiment research on room temperature creep affecting clamping force loss of WJ-7type ballastless track fastener[J]. Railway Standard Design, 2014, 58(8): 60-63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201408016.htm
    [25] WANG Kai-yun, HUANG Chao, ZHAI Wan-ming, et al. Progress on wheel-rail dynamic performance of railway curve negotiation[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 209-220.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  750
  • HTML全文浏览量:  114
  • PDF下载量:  789
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-13
  • 刊出日期:  2015-04-25

目录

    /

    返回文章
    返回