Block backstepping stabilization control of underactuated USV in polar coordinate system
-
摘要: 针对非对称欠驱动无人艇的镇定控制问题, 提出了基于极坐标系的一类多输入多输出分块反步法, 设计了一种漂角极坐标系作为艇体的动坐标系, 以极坐标系代替直角坐标系作为大地坐标系, 将漂角、艏向角与极角融合处理, 获得了极坐标系下无人艇水平面运动的运动学和动力学方程, 使直角坐标系下的欠驱动问题简化为极坐标系下的全驱动问题。结合李亚普诺夫稳定性理论和反步法设计了一种极坐标系下的多输入多输出分块反步镇定控制律, 实现了非对称欠驱动无人艇的镇定控制。在实验室半物理仿真平台下, 以某长度为1.2m、质量为17.5kg的无人艇模型为实例进行镇定控制仿真试验, 对比分析了分块反步镇定控制算法与传统基于对称模型的反步控制算法的控制结果。分析结果表明: 分块反步镇定控制算法的位姿收敛速度提高了约10s, 位置和艏向角镇定误差分别降低了约0.3m和10°, 线速度和角速度超调量分别降低了约0.6m·s-1和2rad·s-1, 因此, 基于非对称模型的极坐标系下欠驱动分块反步法具有较大的可靠性、稳定性和精确性。Abstract: To the stabilization problem of underactuated unsymmetrical unmanned surface vessel(USV), a block backstepping approach with multiple inputs and multiple outputs(MIMO)was proposed in polar coordinate system.A drift angle polar coordinate system was designed as bodyfixed moving coordinate system, and Cartesian coordinate system was replaced by polar coordinate system as earth-fixed coordinate system.By combining the drift angle, yaw angle and polar angle, the kinematics and dynamics equations of USV horizontal plane motion in polar coordinate system were obtained, so that the underactuated problem in Cartesian coordinate systems was simplified to the full actuated problem in polar coordinate system.Based on Lyapunov stability theory and the backstepping approach, MIMO block backstepping stabilization control laws for underactuated unsymmetrical USV in polar coordinate system was designed.With the aid of semi-physical simulation platform in the laboratory, an USV model with 1.2 m and 17.5 kg was taken for stabilization control simulation experiment.The proposed block backstepping stabilization control algorithm was compared with the traditional backsteppingcontrol algorithm based on symmetry model.Comparison result shows that the convergence rates of position and yaw attitude increase by about 10 s, the stabilization errors of position and yaw angle decrease by about 0.3 mand 10° respectively, the overshoots of linear velocity and yaw angle velocity reduce by about 0.6m·s-1 and 2 rad·s-1 separately, so the proposed backstepping control method has higher reliability, stability and accuracy.
-
表 1 无人艇模型参数
Table 1. Parameters of USV model
表 2 无人艇初始状态
Table 2. Initial state of USV
表 3 控制器参数
Table 3. Parameters of controller
-
[1] ANNAMALAI A S K, SUTTON R, YANG C, et al. Robust adaptive control of an uninhabited surface vehicle[J]. Journal of Intelligent and Robotic Systems, 2015, 78(2): 319-338. doi: 10.1007/s10846-014-0057-2 [2] 董早鹏, 刘涛, 万磊, 等. 基于Takagi-Sugeno模糊神经网络的欠驱动无人艇直线航迹跟踪控制[J]. 仪器仪表学报, 2015, 36(4): 863-870. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201504018.htmDONG Zao-peng, LIU Tao, WAN Lei, et al. Straight-path tracking control of underactuated USV based on Takagi-Sugeno fuzzy neural network[J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 863-870. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201504018.htm [3] SOHN S I, OH J H, LEE Y S, et al. Design of a fuel-cellpowered catamaran-type unmanned surface vehicle[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 388-396. doi: 10.1109/JOE.2014.2315889 [4] LIU Cheng, ZOU Zao-jian, HOU Xian-rui. Stabilization and tracking of underactuated surface vessels in random waves with fin based on adaptive hierarchical sliding mode technique[J]. Asian Journal of Control, 2014, 16(5): 1492-1500. doi: 10.1002/asjc.920 [5] DONG Zao-peng, WAN Lei, LI Yue-ming, et al. Point stabilization for an underactuated AUV in the presence of ocean currents[J]. International Journal of Advanced Robotic Systems, 2015, 12(1): 1-14. doi: 10.5772/59888 [6] GHOMMAM J, MNIF F, BENALI A, et al. Asymptotic backstepping stabilization of an underactuated surface vessel[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1150-1157. doi: 10.1109/TCST.2006.880220 [7] 刘杨, 郭晨, 刘雨. 欠驱动船舶运动的非连续变参数镇定控制[J]. 大连海事大学学报, 2009, 35(1): 9-12, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200901004.htmLIU Yang, GUO Chen, LIU Yu. Discontinuous varyingparameters stabilization control for underactuated surface vessel motion[J]. Journal of Dalian Maritime University, 2009, 35(1): 9-12, 17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200901004.htm [8] LIU Zhi-lin, YU Rui-ting, ZHU Qi-dan. Stabilization control and simulation of an unmanned surface vessel[C]∥Chinese Association of Automation. Proceedings of the 30th Chinese Control Conference. Beijing: Chinese Association of Automation, 2011: 3606-3609. [9] 丁福光, 吴静, 隋玉峰. 基于反步法的欠驱动船舶镇定控制[J]. 计算机仿真, 2013, 30(10): 377-381. doi: 10.3969/j.issn.1006-9348.2013.10.086DING Fu-guang, WU Jing, SUI Yu-feng. Stabilization of underactuated surface vessel based on backstepping[J]. Computer Simulation, 2013, 30(10): 377-381. (in Chinese). doi: 10.3969/j.issn.1006-9348.2013.10.086 [10] 李晔, 吴琪. 欠驱动AUV水平面运动的镇定控制设计[J]. 船舶工程, 2013, 35(5): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201305021.htmLI Ye, WU Qi. Self-collected control design of planar motion of underactuated AUV[J]. Ship Engineering, 2013, 35(5): 68-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201305021.htm [11] 刘杨, 郭晨, 张闯. 遗传优化的欠驱动船舶镇定控制[J]. 计算机工程与应用, 2009, 45(8): 204-207. doi: 10.3778/j.issn.1002-8331.2009.08.062LIU Yang, GUO Chen, ZHANG Chuang. Stabilization of underactuated surface vessel with genetic algorithm optimization[J]. Computer Engineering and Applications, 2009, 45(8): 204-207. (in Chinese). doi: 10.3778/j.issn.1002-8331.2009.08.062 [12] LIAO Yu-lei, WAN Lei, ZHUANG Jia-yuan. Full statefeedback stabilization of an underactuated unmanned surface vehicle[C]∥IEEE. 2nd International Conference on Advanced Computer Control. Washington DC: IEEE, 2010: 70-74. [13] 廖煜雷, 庞永杰, 张铁栋. 欠驱动自治水面船的全局K-指数镇定控制方法[J]. 哈尔滨工程大学学报, 2011, 32(4): 417-422. doi: 10.3969/j.issn.1006-7043.2011.04.004LIAO Yu-lei, PANG Yong-jie, ZHANG Tie-dong. Global K-exponential stabilization of underactuated autonomous surface vessels by a smooth time-varying feedback control[J]. Journal of Harbin Engineering University, 2011, 32(4): 417-422. (in Chinese). doi: 10.3969/j.issn.1006-7043.2011.04.004 [14] 曾薄文, 朱齐丹. 欠驱动无人艇的全局时变反馈镇定控制[J]. 船舶工程, 2012, 34(2): 50-52. doi: 10.3969/j.issn.1000-6982.2012.02.014ZENG Bo-wen, ZHU Qi-dan. Global time-varying feedback stabilization control of an underactuated unmanned surface vessel[J]. Ship Engineering, 2012, 34(2): 50-52. (in Chinese). doi: 10.3969/j.issn.1000-6982.2012.02.014 [15] YUAN Xin, RONG Xiao-xu, WANG Yan, et al. Discontinuous k-exponential stabilization of underactuated nosymmetry surface vessel[C]∥ZHONG Shao-bo. Proceedings of the 2012International Conference on Cybernetics and Informatics. Berlin: Springer, 2012: 1769-1776. [16] ZHANG Zhong-cai, WU Yu-qiang. Switching-based asymptotic stabilization of underactuated ships with non-diagonal terms in their system matrices[J]. IET Control Theory and Applications, 2015, 9(6): 972-980. doi: 10.1049/iet-cta.2014.0869 [17] MA Bao-li, XIE Wen-jing. Global asymptotic trajectory tracking and point stabilization of asymmetric underactuated ships with non-diagonal inertia/damping matrices[J]. International Journal of Advanced Robotic Systems, 2013, 10(5): 1-9. [18] 万磊, 董早鹏, 李岳明, 等. 非完全对称欠驱动无人艇全局渐近镇定控制[J]. 华中科技大学学报: 自然科学版, 2014, 42(8): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201408010.htmWAN Lei, DONG Zao-peng, LI Yue-ming, et al. Global asymptotic stabilization control of incomplete symmetry underactuated USV[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(8): 48-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201408010.htm [19] XIE Wen-jing, MA Bao-li. Robust global uniform asymptotic stabilization of underactuated surface vessels with unknown model parameters[J]. International Journal of Robust and Nonlinear Control, 2015, 25(7): 1037-1050. doi: 10.1002/rnc.3129 [20] ROBINSON J W C. Block backstepping for nonlinear flight control law design[C]∥BATES D, HAGSTRÖM M. Nonlinear Analysis and Synthesis Techniques for Aircraft Control, Volume 365of the Series Lecture Notes in Control and Information Sciences. Berlin: Springer, 2007: 231-257. [21] CHANG Yao-te. Block backstepping control of MIMO systems[J]. IEEE Transactions on Automatic Control, 2011, 56(5): 1191-1197. doi: 10.1109/TAC.2011.2109435 [22] RUDRA S, BARAI R K, MAITRA M. Design of nonlinear state feedback control law for underactuated two-link planar robot: a block backstepping approach[C]∥ACM. Proceedings of2013 Conference on Advances in Robotics. New York: ACM, 2013: 1-6. [23] DO K D. Global inverse optimal stabilization of stochastic nonholonomic systems[J]. Systems and Control Letters, 2015, 75: 41-55. [24] 万磊, 董早鹏, 李岳明, 等. 非完全对称欠驱动高速无人艇轨迹跟踪控制[J]. 电机与控制学报, 2014, 18(10): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201410016.htmWAN Lei, DONG Zao-peng, LI Yue-ming, et al. Trajectory tracking control of incomplete symmetry underactuated USV at high speed[J]. Electric Machines and Control, 2014, 18(10): 95-103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201410016.htm [25] DO K D, PAN J. Global robust adaptive path following of underactuated ships[J]. Automatica, 2006, 42(10): 1713-1722.