留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶主机能效模型

范爱龙 严新平 尹奇志 孙星 陈前昆 张永波

范爱龙, 严新平, 尹奇志, 孙星, 陈前昆, 张永波. 船舶主机能效模型[J]. 交通运输工程学报, 2015, 15(4): 69-76. doi: 10.19818/j.cnki.1671-1637.2015.04.009
引用本文: 范爱龙, 严新平, 尹奇志, 孙星, 陈前昆, 张永波. 船舶主机能效模型[J]. 交通运输工程学报, 2015, 15(4): 69-76. doi: 10.19818/j.cnki.1671-1637.2015.04.009
FAN Ai-long, YAN Xin-ping, YIN Qi-zhi, SUN Xing, CHEN Qian-kun, ZHANG Yong-bo. Energy efficiency model of marine main engine[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 69-76. doi: 10.19818/j.cnki.1671-1637.2015.04.009
Citation: FAN Ai-long, YAN Xin-ping, YIN Qi-zhi, SUN Xing, CHEN Qian-kun, ZHANG Yong-bo. Energy efficiency model of marine main engine[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 69-76. doi: 10.19818/j.cnki.1671-1637.2015.04.009

船舶主机能效模型

doi: 10.19818/j.cnki.1671-1637.2015.04.009
基金项目: 

国家自然科学基金项目 51279149

高等学校博士学科点专项科研基金项目 20120143130002

船舶动力工程技术交通行业重点实验室开放基金项目 444-20310142

详细信息
    作者简介:

    范爱龙(1990-), 男, 安徽巢湖人, 武汉理工大学工学博士研究生, 从事船舶能效提升技术研究

    严新平(1959-), 男, 江西莲花人, 武汉理工大学教授, 工学博士

  • 中图分类号: U664.1

Energy efficiency model of marine main engine

More Information
  • 摘要: 根据船、机、桨关系, 以船舶动力装置的能量传递为基础, 基于MATLAB/Simulink仿真平台建立了主机能效模型。以某内河旅游船舶为研究对象, 根据船体与主机参数, 利用回归多项式法得到螺旋桨敞水特性曲线。在船舶上安装了油耗仪等传感器, 采集了主机瞬时油耗、船舶对地航速、对水航速等数据, 并计算了主机的实际能效。针对实船采集数据, 分析了航道水流速度的分布特征。基于仿真模型, 计算了船舶在不同航道水流速度与对水航速下的主机能效, 比较分析了实测数据与仿真结果, 并对模型进行了验证。验证结果表明: 航道水流速度偏度为-0.033, 总体服从正态分布; 船舶实际主机能效与对水航速之间不是一一对应关系, 而是相关系数为0.824的散点分布; 船舶主机能效模型能够精确地表征船舶在航行过程中的主机能效水平及其变化规律, 误差不大于10.5%。

     

  • 图  1  船、机、桨关系

    Figure  1.  Hull-engine-propeller relationship

    图  2  旅游船舶

    Figure  2.  Cruise ship

    图  3  阻力曲线

    Figure  3.  Resistance curve

    图  4  主机特性曲线

    Figure  4.  Characteristic curve of main engine

    图  5  螺旋桨敞水特性曲线与辅助曲线

    Figure  5.  Open-water characteristic curves and auxiliary curve of propeller

    图  6  计算流程

    Figure  6.  Calculation flow

    图  7  主机能效模型

    Figure  7.  Energy efficiency model of main engine

    图  8  传感器

    Figure  8.  Sensors

    图  9  水流速度分布

    Figure  9.  Distribution of water speeds

    图  10  主机能效仿真结果

    Figure  10.  Simulation result of EEOI for main engine

    图  11  主机能效验证结果

    Figure  11.  Verification result of EEOI for main engine

    表  1  旅游船舶参数

    Table  1.   Parameters of cruise ship

    表  2  数据信息

    Table  2.   Data informations

    表  3  模型精度

    Table  3.   Model accuracy

  • [1] Marine Environment Protection Committee. Prevention of air pollution from ships(Second IMO GHG Study 2009)[R]. London: International Maritime Organization, 2009.
    [2] Marine Environment Protection Committee. Prevention of air pollution from ships(Third IMO GHG Study 2014)[R]. London: International Maritime Organization, 2014.
    [3] BJILSMA S J. Minimal time route computation for ships with pre-specified voyage fuel consumption[J]. The Journal of Navigation, 2008, 61(4): 723-733. doi: 10.1017/S037346330800492X
    [4] LO K. A critical review of China's rapidly developing renewable energy and energy efficiency policies[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 508-516. doi: 10.1016/j.rser.2013.09.006
    [5] BALLOU P J. Ship energy efficiency management requires a total solution approach[J]. Marine Technology Society Journal, 2013, 47(1): 83-95. doi: 10.4031/MTSJ.47.1.5
    [6] PSARAFTIS H N, KONTOVAS C A. Ship speed optimization: concepts, models and combined speed-routing scenarios[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 52-69. doi: 10.1016/j.trc.2014.03.001
    [7] SHAO Wei, ZHOU Pei-lin, THONG S K. Development of a novel forward dynamic programming method for weather routing[J]. Journal of Marine Science and Technology, 2012, 17(2): 239-251. doi: 10.1007/s00773-011-0152-z
    [8] LINDSTAD H, ASBJØRNSLETT B E, STRØMMAN A H. Reductions in greenhouse gas emissions and cost by shipping at lower speeds[J]. Energy Policy, 2011, 39(6): 3456-3464. doi: 10.1016/j.enpol.2011.03.044
    [9] NORSTAD I, FAGERHOLT K, LAPORTE G. Tramp ship routing and scheduling with speed optimization[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(5): 853-865. doi: 10.1016/j.trc.2010.05.001
    [10] LEIFSSON L P, SAEVARSDOTTIR H, SIGUROSSON S P, et al. Grey-box modeling of an ocean vessel for operational optimization[J]. Simulation Modelling Practice and Theory, 2008, 16(8): 923-932. doi: 10.1016/j.simpat.2008.03.006
    [11] SHI Wei, GRIMMELIUS H. Comparison of modeling techniques for simulation of fuel consumption of dredgers[C]∥BERTRAM V. The 9th International Conference on Computer and IT Applications in the Maritime Industries. Gubbio: TUHHTechnologie GmbH, 2010: 382-395.
    [12] 杨国豪, 徐轶群, 林荣模. 基于模糊评判的船舶能耗评估[J]. 中国航海, 2011, 34(4): 22-25, 50. doi: 10.3969/j.issn.1000-4653.2011.04.006

    YANG Guo-hao, XU Yi-qun, LIN Rong-mo. Fuzzy evaluation of ship energy consumption[J]. Navigation of China, 2011, 34(4): 22-25, 50. (in Chinese). doi: 10.3969/j.issn.1000-4653.2011.04.006
    [13] YAN Xin-ping, SUN Xing, YIN Qi-zhi. Multiparameter sensitivity analysis of operational energy efficiency for inland river ships based on backpropagation neural network method[J]. Marine Technology Society Journal, 2015, 49(1): 148-153. doi: 10.4031/MTSJ.49.1.5
    [14] SALA A, CARLO F D, BUGLIONI G, et al. Energy performance evaluation of fishing vessels by fuel mass flow measuring system[J]. Ocean Engineering, 2011, 38(5/6): 804-809.
    [15] BARRO R D C, KIM J S, LEE D C. Real time monitoring of energy efficiency operation indicator on merchant ships[J]. Journal of the Korean Society of Marine Engineering, 2011, 35(3): 301-308.
    [16] SUN Xing, YAN Xin-ping, WU Bing, et al. Analysis of the operational energy efficiency for inland river ships[J]. Transportation Research Part D: Transport and Environment, 2013, 22: 34-39. doi: 10.1016/j.trd.2013.03.002
    [17] 陈前昆, 严新平, 尹奇志, 等. 基于EEOI的内河船舶航速优化研究[J]. 交通信息与安全, 2014, 32(4): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201404016.htm

    CHEN Qian-kun, YAN Xin-ping, YIN Qi-zhi, et al. Speed optimization for inland river ships based on EEOI[J]. Journal of Transport Information and Safety, 2014, 32(4): 87-91. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201404016.htm
    [18] CORADDU A, FIGARI M, SAVIO S. Numerical investigation on ship energy efficiency by Monte Carlo simulation[J]. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2014, 228(3): 220-234. doi: 10.1177/1475090214524184
    [19] 李可顺, 刘伊凡, 孙培廷. 船舶能效营运指数仿真建模[J]. 中国航海, 2014, 37(2): 105-108, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201402026.htm

    LI Ke-shun, LIU Yi-fan, SUN Pei-ting. Modeling and simulation of ship energy efficiency operation indicator[J]. Navigation of China, 2014, 37(2): 105-108, 121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201402026.htm
    [20] 颜林. 国内船舶能效指数与CO2排放基线实船研究[D]. 武汉: 武汉理工大学, 2011.

    YAN Lin. Research on energy efficiency index and CO2emission from ships in China[D]. Wuhan: Wuhan University of Technology, 2011. (in Chinese).
    [21] 倪骏恺. 船舶能效营运指数研究[D]. 上海: 上海交通大学, 2010.

    NI Jun-kai. Research on ship energy efficiency operational indicator[D]. Shanghai: Shanghai Jiaotong University, 2010. (in Chinese).
    [22] FAN Ai-long, YAN Xin-ping, YIN Qi-zhi, et al. Study of Yangtze River waterway partition based on cluster analysis[C]∥TRB. 94th Annual Meeting of the Transportation Research Board. Washington DC: TRB, 2015: 1-15.
    [23] Marine Environment Protection Committee. Guidelines for voluntary use of the ship energy efficiency operational indicator(EEOI)[R]. London: International Maritime Organization, 2009.
    [24] HOLTROP J, MENNEN G G. An approximate power prediction method[J]. International Shipbuilding Progress, 1982, 29: 166-170. doi: 10.3233/ISP-1982-2933501
    [25] 张绍阳, 葛丽娟, 安毅生, 等. 交通运输数据标准研究现状与发展[J]. 交通运输工程学报, 2014, 14(2): 112-126. http://transport.chd.edu.cn/article/id/201402016

    ZHANG Shao-yang, GE Li-juan, AN Yi-sheng, et al. Research status and development of transportation data standards[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 112-126. (in Chinese). http://transport.chd.edu.cn/article/id/201402016
    [26] 张笛, 万程鹏, 严新平. 基于事故特征分析的长江碍航风险研究[J]. 中国航海, 2013, 36(2): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201302023.htm

    ZHANG Di, WAN Cheng-peng, YAN Xin-ping. Navigation hindering risk assessment of the Yangtze River based on analysis of accident characteristics[J]. Navigation of China, 2013, 36(2): 94-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201302023.htm
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  262
  • PDF下载量:  1414
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-27
  • 刊出日期:  2015-04-25

目录

    /

    返回文章
    返回