-
摘要: 针对底盘关键子系统对车辆行驶稳定性影响能力与有效作用区域的差异, 综合考虑轮胎的非线性特性与各子系统间动力学耦合关系, 建立整车14自由度非线性动力学模型, 分别运用非线性H∞控制和模糊控制对转向、悬架和制动子系统进行控制性能研究, 采用多级递阶控制理论设计了组织级、协调级和执行级的车辆稳定性多级协调控制系统。运用滑模控制理论与轮胎逆模型将组织级得到的保持车辆行驶稳定性所需的广义目标控制力和力矩转化为轮胎侧偏角和滑移率, 再基于功能分配原理对各子系统控制功能进行协调, 实现了底盘复杂系统的功能解耦, 并对整车稳定性协调控制系统进行了仿真分析。仿真结果表明: 防抱死制动系统与半主动悬架系统联合控制对车辆稳定性的控制效果相对较差, 主动前轮转向的加入可以明显改善车辆的操纵稳定性。相对于汽车底盘子系统联合控制, 多级递阶协调控制能更好地改善整车行驶稳定性, 使制动距离减小, 保持滑移率基本在目标值0.2附近。Abstract: Based on the differences of chassis key subsystems influences on vehicle stability and effective acting regions, the nonlinear characteristic of tires and the dynamics coupling relation among vehicle chassis subsystems were comprehensively considered, and the 14-DOF full vehicle model was built.Nonlinear H∞ control and fuzzy control were separately utilized for chassis steering, braking and suspension to study the control performances.Multi-level hierarchical control theory was adopted to establish vehicle stability coordinated control system including organization, coordination and execution level.Sliding mode control theory and inverse tire model were used to translate the generalized target control forces and moments from organization level into tire sideslip angle and slip ratio.Based on the principle of function distribution, the control function of each subsystem was coordinated, the function decoupling of vehicle chassis complex system was realized, and full vehicle stability coordinated control system was simulated.Simulation result shows that the control effect on vehicle stability by combined control of ABS(anti-lock braking system)and SAS(semi-active suspension system)is relatively poor, butjoining AFS(active front steering)can significantly improve vehicle handling stability.Compared to vehicle chassis subsystem combined control, multi-level hierarchical coordinated control can improve vehicle stability preferably, reduce the braking distance and keep the slip ratio near the target value 0.2basically.
-
表 1 车辆行驶状态辨识与稳定性判断
Table 1. Vehicle driving state identification and stability estimation
表 2 车辆主要参数
Table 2. Main parameters of vehicle
-
[1] 陈虹, 宮洵, 胡云峰, 等. 汽车控制的研究现状与展望[J]. 自动化学报, 2013, 39(1): 1-25. doi: 10.3969/j.issn.1003-8930.2013.01.001CHEN Hong, GONG Xun, HU Yun-feng, et al. Automotive control: the state of the art and perspective[J]. Acta Automatica Sinica, 2013, 39(1): 1-25. (in Chinese). doi: 10.3969/j.issn.1003-8930.2013.01.001 [2] 孙涛, 朱红全, 徐桂红. 车辆主动安全性的底盘子系统集成控制研究[J]. 控制工程, 2014, 21(2): 226-231, 236. doi: 10.3969/j.issn.1671-7848.2014.02.016SUN Tao, ZHU Hong-quan, XU Gui-hong. Study on integrated control of chassis sub-systems for vehicle active safety[J]. Control Engineering of China, 2014, 21(2): 226-231, 236. (in Chinese). doi: 10.3969/j.issn.1671-7848.2014.02.016 [3] 王梦琳, 孙涛, 郑松林, 等. 基于底盘子系统协同控制的车辆防侧翻性能分析[J]. 系统仿真学报, 2015, 27(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201501023.htmWANG Meng-lin, SUN Tao, ZHENG Song-lin, et al. Simulation of anti-rollover performance based on chassis collaborative control[J]. Journal of System Simulation, 2015, 27(1): 163-170. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201501023.htm [4] 赵健, 郭俐彤, 朱冰, 等. 基于底盘集成控制的轻型汽车防侧翻控制[J]. 汽车工程, 2014, 36(3): 334-339, 367. doi: 10.3969/j.issn.1000-680X.2014.03.015ZHAO Jian, GUO Li-tong, ZHU Bing, et al. Roll control of light vehicles based on integrated chassis control[J]. Automotive Engineering, 2014, 36(3): 334-339, 367. (in Chinese). doi: 10.3969/j.issn.1000-680X.2014.03.015 [5] ZHOU Yu-cai, CHEN Shi-an, WANG Jun-cheng. Twoacceleration-error-input proportional-integral-derivative control for vehicle active suspension[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 228-234. doi: 10.1016/S2095-7564(15)30106-9 [6] TRÄCHTLER A. Integrated vehicle dynamics control using active brake, steering and suspension systems[J]. International Journal of Vehicle Design, 2004, 36(1): 1-12. doi: 10.1504/IJVD.2004.005316 [7] NAGAI M. The perspectives of research for enhancing active safety based on advanced control technology[J]. Vehicle System Dynamics, 2007, 45(5): 413-431. doi: 10.1080/00423110701275162 [8] KVASNICKA P, DICK P. Integrated development of vehicle dynamics demonstrated on the new BMW 3series[C]∥SAEChina, FISITA. Proceedings of the FISITA 2012 World Automotive Congress. Berlin: Springer, 2012: 379-389. [9] HWANGT H, PARK K, HEO S J, et al. Design of integrated chassis control logics for AFS and ESP[J]. International Journal of Automotive Technology, 2008, 9(1): 17-27. [10] LIN J S, TING W E. Nonlinear control design of anti-lock braking systems with assistance of active suspension[J]. IET Control Theory and Applications, 2007, 1(1): 343-348. doi: 10.1049/iet-cta:20050218 [11] 陈无畏, 周慧会, 刘翔宇. 汽车ESP与ASS分层协调控制研究[J]. 机械工程学报, 2009, 45(8): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200908034.htmCHEN Wu-wei, ZHOU Hui-hui, LIU Xiang-yu. Simulation research on layered coordinated control of automotive ESP and ASS[J]. Journal of Mechnical Engineering, 2009, 45(8): 190-196. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200908034.htm [12] 汪洪波, 陈无畏, 杨柳青, 等. 基于博弈论和功能分配的汽车底盘系统协调控制[J]. 机械工程学报, 2012, 48(22): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201222019.htmWANG Hong-bo, CHEN Wu-wei, YANG Liu-qing, et al. Coordinated control of vehicle chassis system based on game theory and function distribution[J]. Journal of Mechnical Engineering, 2012, 48(22): 105-112. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201222019.htm [13] 汪洪波, 陈无畏. 汽车底盘集成系统协调控制研究[J]. 系统科学与数学, 2015, 35(5): 527-538. https://www.cnki.com.cn/Article/CJFDTOTAL-STYS201505004.htmWANG Hong-bo, CHEN Wu-wei. Vehicle chassis integrated system coordinated control[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(5): 527-538. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-STYS201505004.htm [14] 牛礼民. 车辆半主动悬架和电动助力转向集成控制的研究与实现[D]. 镇江: 江苏大学, 2008.NIU Li-min. Research and realization of integrated control on vehicle semi-active suspension and electric power steering[D]. Zhenjiang: Jiangsu University, 2008. (in Chinese). [15] BURHAUMUDIN M S, SAMIN P M, RAHMAN R A, et al. Integration of Magic Formula tire model with vehicle handling model[J]. International Journal of Research in Engineering and Technology, 2012, 1(3): 139-145. [16] 李道飞. 基于轮胎力最优分配的车辆动力学集成控制研究[D]. 上海: 上海交通大学, 2008.LI Dao-fei. Study on integrated vehicle dynamics control based on optimal tire force distribution[D]. Shanghai: Shanghai Jiaotong University, 2008. (in Chinese). [17] 刘跃, 方敏, 汪洪波. 车辆稳定控制中的合力计算与分配[J]. 控制理论与应用, 2013, 30(9): 1122-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201309008.htmLIU Yue, FANG Min, WANG Hong-bo. Force calculation and distribution in vehicle stability control[J]. Control Theory and Applications, 2013, 30(9): 1122-1130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201309008.htm [18] 吴晓东, 李冰, 赵学增. 差动制动对汽车制动稳定性的影响[J]. 交通运输工程学报, 2008, 8(1): 23-26. http://transport.chd.edu.cn/article/id/200801006WU Xiao-dong, LI Bing, ZHAO Xue-zeng. Effect of differential brake on braking stability of automobile[J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 23-26. (in Chinese). http://transport.chd.edu.cn/article/id/200801006 [19] 赵树恩, 李玉玲, 刘文文. 融合主动转向功能的电动助力转向系统H∞控制[J]. 机械科学与技术, 2014, 33(8): 1233-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201408025.htmZHAO Shu-en, LI Yu-ling, LIU Wen-wen. H∞control for electric power steering system integrated with function of active steering[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(8): 1233-1237. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201408025.htm [20] 赵树恩, 李玉玲. 汽车整车半主动悬架模块化并联模糊控制[J]. 计算机仿真, 2013, 30(5): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201305036.htmZHAO Shu-en, LI Yu-ling. Full vehicle semi-active suspension modularize parallel fuzzy control[J]. Computer Simulation, 2013, 30(5): 143-147. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201305036.htm