-
摘要: 为了提高交通事件还原的准确性, 提出一种基于双目极几何关系的高精度交通现场三维重建时间校正方法。分析了多个非同步相机帧序列, 建立了非同步相机时间校正模型。为了校正多部非同步相机的时间误差, 采用极几何约束和点到极线距离最小约束准则, 进行对应帧时间同步匹配。由2部非同步相机组成拍摄系统, 进行对应帧时间匹配误差分析, 估算视频序列起始帧时间误差, 实现高精度动态场景复原。通过闪烁LED灯的移动模拟高速移动的车辆, 估计时间误差范围。为了进一步验证方法在实际道路环境中的有效性, 利用4部相机拍摄自由落体的皮球视频序列, 分别使用相似度判别的时间校正方法和本文方法进行对比试验。试验结果表明: 当相机的曝光时间为1/30s, 高速移动的发光源闪烁周期为6.59ms时, 视频序列的起始帧时间误差范围为0~6.59ms, 在这个误差范围内的对应帧数达到88.1%以上; 与相似度判别的时间校正方法相比, 本文方法效果较好; 与几种传统时间校正方法相比, 本文方法显著提高了道路监控系统中非同步相机对应帧时间误差匹配和三维重建的精确度。Abstract: In order to improve the reduction accuracy of traffic incident, a high accuracy time correction method of traffic scene 3Dreconstruction was proposed based on binocular epipolar geometry relationship.The frame sequences of multiple asynchronous cameras were analyzed, and the time correction model of asynchronous cameras was established.In order to correct the time error of multiple asynchronous cameras, corresponding frame time synchronous matching was carried out by using the epipolar geometry constraints and the constraint principle of minimum distance from point to pole line.The shooting system composed of 2asynchronous cameras was built, the time matching error of corresponding frame was analyzed.The time error of start frame in video sequences was estimated, and the recovery of high precision dynamic scenes was realized.High-speed moving vehicle was simulated by using flashing LED, and the range of time error was estimated.In order to further validate the effectiveness of the method in actual road environment, four cameras were used to shoot the video sequences of freefall ball, thecomparative tests were respectively carried out by using time correction method based on similarity discrimination and the proposed method.Test result indicates that when the exposure time of camera is 1/30 s, and the cycle of high-speed flashing light with is 6.59 ms, the time error range of start frame is from 0to 6.59 ms, the corresponding frames ratio is above 88.1%.Compared with the time correction method based on similarity discrimination, the proposed method performs well.Compared with the several traditional time correction methods, the accuracies of time error matching and the 3Dreconstruction of asynchronous cameras in road monitoring system are significantly improved.
-
表 1 统计结果
Table 1. Statistics result
表 2 不同方法误差比较
Table 2. Error comparison of different methods
-
[1] 魏君成, 武星星, 刘金国, 等. 空间相机平台时间同步误差分析与改进研究[J]. 计算机测量与控制, 2014, 22(4): 1294-1296. doi: 10.3969/j.issn.1671-4598.2014.04.101WEI Jun-cheng, WU Xing-xing, LIU Jin-guo, et al. Research on analysis and improvement of platform time synchronization errors of space camera[J]. Computer Measurement and Control, 2014, 22(4): 1294-1296. (in Chinese). doi: 10.3969/j.issn.1671-4598.2014.04.101 [2] 石波, 李国玉, 王冬. 数码航测中多拼CCD相机同步曝光方法及其实验分析[J]. 测绘科学, 2012, 37(5): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201205023.htmSHI Bo, LI Guo-yu, WANG Dong. A method for synchronized exposure of multi-CCD cameras in digital phtogrammetry and its experimental analysis[J]. Science of Surveying and Mapping, 2012, 37(5): 72-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201205023.htm [3] 陈建华, 张雷, 阮善发. 非量测相机同步摄影控制器[J]. 南京工业大学学报: 自然科学版, 2003, 25(5): 92-94, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200305023.htmCHEN Jian-hua, ZHANG Lei, RUAN Shan-fa. Synchronic exposure controller for non-metric cameras[J]. Journal of Nanjing University of Technolog: Natural Science Edition, 2003, 25(5): 92-94, 100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200305023.htm [4] 冷雪, 张雪菲, 李文明, 等. 全帧CCD相机时间延迟积分模式下的图像缺损[J]. 光学精密工程, 2014, 22(2): 467-473. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402031.htmLENG Xue, ZHANG Xue-fei, LI Wen-ming, et al. Image defect of full-frame CCD in TDI mode[J]. Optics and Precision Engineering, 2014, 22(2): 467-473. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402031.htm [5] 林辉, 石波, 赵倩, 等. 多相机同步曝光及GPS时间校正的处理与实现[J]. 测绘工程, 2013, 22(2): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201302022.htmLIN Hui, SHI Bo, ZHAO Qian, et al. Multi-camera synchronization exposure and GPS time correction processing[J]. Engineering of Surveying and Mapping, 2013, 22(2): 79-81. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201302022.htm [6] PILLMAN B, JASINSKI D. Camera exposure determination based on a psychometric quality model[J]. Journal of Signal Processing Systems, 2011, 65(2): 147-158. doi: 10.1007/s11265-011-0612-z [7] SATO S, OKADA Y, AZUMA T. Real time high-sensitivity imaging for home surveillance system by using combined long/short exposure[C]∥IEEE. 2011International Conference on Digital Image Computing: Techniques and Applications. New York: IEEE, 2011: 429-435. [8] 陈绕青, 曹国, 毛志红. 一种空间面阵CCD成像的曝光时间计算方法[J]. 计算机工程, 2012, 38(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201212003.htmCHEN Rao-qing, CAO Guo, MAO Zhi-hong. Computation method of exposure time for space array CCD imaging[J]. Computer Engineering, 2012, 38(12): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201212003.htm [9] 李军正, 李建文, 郝金明, 等. GPS接收机动态检定场中的时间同步问题[J]. 测绘科学技术学报, 2006, 23(6): 429-431. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC200606011.htmLI Jun-zheng, LI Jian-wen, HAO Jin-ming, et al. The time synchronization in the kinematic verification network for GPS receivers[J]. Journal of Geomatics Science and Technology, 2006, 23(6): 429-431. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC200606011.htm [10] 杜保强, 刘丹, 郭淑婷, 等. 基于时间间隔测量的宽范围高分辨率时间同步检测方法[J]. 电子学报, 2013, 41(6): 1076-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201306007.htmDU Bao-qiang, LIU Dan, GUO Shu-ting, et al. High-resolution and wide-range time synchronization detection method based on time interval measurement[J]. Acta Electronica Sinica, 2013, 41(6): 1076-1083. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201306007.htm [11] 周鹏, 皮亦鸣, 戴永寿, 等. 星机双基地SAR的时间同步误差分析[J]. 电子学报, 2011, 39(6): 1467-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201106044.htmZHOU Peng, PI Yi-ming, DAI Yong-shou, et al. Analysis of time synchronization errors in spaceborne/airborne hybrid bistatic SAR[J]. Acta Electronica Sinica, 2011, 39(6): 1467-1470. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201106044.htm [12] 李英环. 高速图像数字记录同步精度监测系统设计与实现[D]. 哈尔滨: 哈尔滨工业大学, 2013.LI Ying-huan. Design and implementation for synchronization precision detection system of the record of high-speed digital image[D]. Harbin: Harbin Institute of technology, 2013. (in Chinese). [13] 吕行军, 韩宪忠, 陈含, 等. 改进分量法的麦穗图像灰度-二值化处理[J]. 河北农业大学学报, 2012, 35(3): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CULT201203022.htmLU Xing-jun, HAN Xian-zhong, CHEN Han, et al. Wheat spike image gray-binarization processing using improved G-component method[J]. Journal of Agricultural University of Hebei, 2012, 35(3): 112-116. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CULT201203022.htm [14] 刘红. 一种基于图的近重复视频子序列匹配算法[J]. 计算机应用研究, 2013, 30(12): 3857-3862. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201312091.htmLIU Hong. Graph-based near-duplicate video subsequence matching algorithm[J]. Application Research of Computers, 2013, 30(12): 3857-3862. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201312091.htm [15] 耿英楠, 赵岩, 陈贺新. 基于运动估计的置信度传播立体视频匹配算法[J]. 吉林大学学报: 信息科学版, 2010, 28(4): 329-333. https://www.cnki.com.cn/Article/CJFDTOTAL-CCYD201004002.htmGENG Ying-nan, ZHAO Yan, CHEN He-xin. Stereo video matching algorithm of belief propagation based on motion estimation[J]. Journal of Jilin University: Information Science Edition, 2010, 28(4): 329-333. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CCYD201004002.htm [16] HACHAJ T, OGIELA M R. Real time area-based stereo matching algorithm for multimedia video devices[J]. Opto-Electronics Review, 2013, 21(4): 367-375. [17] 吴成柯, 颜尧平, 卢朝阳. 对极几何约束下的运动估计和补偿[J]. 电子学报, 1998, 26(10): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU199810013.htmWU Cheng-ke, YAN Yao-ping, LU Zhao-yang. Motion estimation and compensation based on epipolar geometry constraint[J]. Acta Electronica Sinica, 1998, 26(10): 66-69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU199810013.htm [18] 李立春, 邱志强, 王鲲鹏, 等. 基于匹配测度加权求解基础矩阵的三维重建算法[J]. 计算机应用, 2007, 27(10): 2530-2533, 2537. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY200710057.htmLI Li-chun, QIU Zhi-qiang, WANG Kun-peng, et al. 3D reconstruction based on fundamental matrix estimation weighted by match measure[J]. Computer Applications, 2007, 27(10): 2530-2533, 2537. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY200710057.htm [19] 山海涛, 郝向阳, 哈长亮, 等. 视觉基本矩阵与摄影测量中相对方位元素的关系推导[J]. 海洋测绘, 2012, 32(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201201006.htmSHAN Hai-tao, HAO Xiang-yang, HA Chang-liang, et al. The derivation for relation between vision fundamental matrix and relative orientation element of photogrammetry[J]. Hydrographic Surveying and Charting, 2012, 32(1): 11-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201201006.htm [20] 段丕轩, 程尧, 何苗, 等. 基于NTP的同步采集系统研制[J]. 计算机测量与控制, 2013, 21(12): 3439-3440, 3443. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201312089.htmDUAN Pi-xuan, CHENG Yao, HE Miao, et al. Development of a synchronous measurement system with NTP[J]. Computer Measurement and Control, 2013, 21(12): 3439-3440, 3443. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201312089.htm