留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于龚帕斯模型的改性乳化沥青胶浆黏度与沥青破乳评价

张久鹏 朱红斌 裴建中 罗资军

张久鹏, 朱红斌, 裴建中, 罗资军. 基于龚帕斯模型的改性乳化沥青胶浆黏度与沥青破乳评价[J]. 交通运输工程学报, 2015, 15(5): 1-7. doi: 10.19818/j.cnki.1671-1637.2015.05.001
引用本文: 张久鹏, 朱红斌, 裴建中, 罗资军. 基于龚帕斯模型的改性乳化沥青胶浆黏度与沥青破乳评价[J]. 交通运输工程学报, 2015, 15(5): 1-7. doi: 10.19818/j.cnki.1671-1637.2015.05.001
ZHANG Jiu-peng, ZHU Hong-bin, PEI Jian-zhong, LUO Zi-jun. Evaluation of asphalt demulsification and viscosity of modified asphalt emulsion mortar based on Gompertz model[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 1-7. doi: 10.19818/j.cnki.1671-1637.2015.05.001
Citation: ZHANG Jiu-peng, ZHU Hong-bin, PEI Jian-zhong, LUO Zi-jun. Evaluation of asphalt demulsification and viscosity of modified asphalt emulsion mortar based on Gompertz model[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 1-7. doi: 10.19818/j.cnki.1671-1637.2015.05.001

基于龚帕斯模型的改性乳化沥青胶浆黏度与沥青破乳评价

doi: 10.19818/j.cnki.1671-1637.2015.05.001
基金项目: 

国家自然科学基金项目 51378073

国家自然科学基金项目 51408043

陕西省自然科学基础研究计划项目 2014JQ7278

中央高校基本科研业务费专项资金项目 310821153502

中央高校基本科研业务费专项资金项目 310821152003

详细信息
    作者简介:

    张久鹏(1983-), 男, 江苏盐城人, 长安大学副教授, 工学博士, 从事路面结构与材料研究

  • 中图分类号: U414.18

Evaluation of asphalt demulsification and viscosity of modified asphalt emulsion mortar based on Gompertz model

More Information
    Author Bio:

    ZHANG Jiu-peng (1983-), male, associate professor, PhD, +86-29-62630058, zhjiupeng@163.com

  • 摘要: 针对改性乳化沥青破乳时间难以量化评价的不足, 采用不同类型的细集料与改性乳化沥青制备了改性乳化沥青胶浆, 运用龚帕斯模型分析了其黏度随时间的变化规律, 并建立了准确评价改性乳化沥青破乳的数学模型。研究结果表明: 改性乳化沥青胶浆初始黏度较低, 随沥青破乳时间的增大而不断增大, 最后趋于稳定; 当集料粒径相同时, 花岗岩改性乳化沥青胶浆的黏度最大, 玄武岩胶浆的黏度次之, 而石灰岩胶浆的黏度最小, 但黏度增长速率基本相同, 符合生长曲线的特征; 龚帕斯模型可以较好地反映胶浆黏度随时间的变化规律, 计算值与实测值的最大相对误差小于15%; 当根据龚帕斯模型建立的沥青破乳评价指标值为0.97~1.00时, 胶浆黏度变化趋于平稳, 此时改性乳化沥青已经完全破乳; 反之, 也可以根据黏度试验结果计算龚帕斯模型参数, 预测改性乳化沥青破乳时间。

     

  • 图  1  布氏旋转黏度计

    Figure  1.  Brookfield rotational viscometer

    图  2  改性乳化沥青胶浆(0.075mm集料)黏度变化规律

    Figure  2.  Viscosity variation rules of modified asphalt emulsion mortars with 0.075mm aggregates

    图  3  改性乳化沥青胶浆(0.15mm集料)黏度变化规律

    Figure  3.  Viscosity variation rules of modified asphalt emulsion mortars with 0.15mm aggregates

    图  4  改性乳化沥青胶浆(0.3mm集料)黏度变化规律

    Figure  4.  Viscosity variation rules of modified asphalt emulsion mortars with 0.3mm aggregates

    图  5  改性乳化沥青胶浆(0.075mm集料)的黏度拟合相对误差

    Figure  5.  Fitted relative errors of viscosities for modified asphalt emulsion mortars with 0.075mm aggregates

    图  6  改性乳化沥青胶浆(0.15mm集料)的黏度拟合相对误差

    Figure  6.  Fitted relative errors of viscosities for modified asphalt emulsion mortars with 0.15mm aggregates

    图  7  改性乳化沥青胶浆(0.3mm集料)的黏度拟合相对误差

    Figure  7.  Fitted relative errors of viscosities for modified asphalt emulsion mortars with 0.3mm aggregates

    图  8  改性乳化沥青胶浆(0.075mm集料)的沥青破乳时间和评价函数值

    Figure  8.  Asphalt demulsification times and evaluation function values of modified asphalt emulsion mortarswith 0.075mm aggregate

    图  9  改性乳化沥青胶浆(0.15mm集料)的破乳时间和评价函数值

    Figure  9.  Asphalt demulsification times and evaluation function values of modified asphalt emulsion mortarswith 0.15mm aggregate

    图  10  改性乳化沥青胶浆(0.3mm集料)的破乳时间和评价函数值

    Figure  10.  Asphalt demulsification times and evaluation function values of modified asphalt emulsion mortarswith 0.3mm aggregate

    表  1  SBR改性乳化沥青的技术指标

    Table  1.   Technical indices of SBR modified asphalt emulsion

    表  2  集料主要矿物成分

    Table  2.   Major chemical components in aggregates

    表  3  集料比表面积

    Table  3.   Specific surface areas of aggregates

    表  4  集料表面电位

    Table  4.   Zeta potentials on aggregate surfaces

    表  5  石灰岩改性乳化沥青胶浆黏度的龚帕斯模型参数

    Table  5.   Gompertz model parameters of modified asphalt emulsion mortars with limestone aggregates

    表  6  玄武岩改性乳化沥青胶浆黏度的龚帕斯模型参数

    Table  6.   Gompertz model parameters of modified asphalt emulsion mortars with basalt aggregates

    表  7  花岗岩改性乳化沥青胶浆黏度的龚帕斯模型参数

    Table  7.   Gompertz model parameters of modified asphalt emulsion mortars with granite aggregates

  • [1] 林俊涛, 吴少鹏, 刘全涛, 等. 沥青路面功能性预养护材料的养护时机研究[J]. 中国公路学报, 2014, 27(9): 19-24. doi: 10.3969/j.issn.1001-7372.2014.09.003

    LIN Jun-tao, WU Shao-peng, LIU Quan-tao, et al. Research on maintenance time for functional preventive materials in asphalt pavement[J]. China Journal of Highway and Transport, 2014, 27(9): 19-24. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.09.003
    [2] ORUC S, CELIK F, AKPINAR M. Effect of cement on emulsified asphalt mixtures[J]. Journal of Materials Engineering and Performance, 2007, 16(5): 578-583. doi: 10.1007/s11665-007-9095-2
    [3] 高志伟, 宋炜玮. 乳化沥青微表处混合料耐久性研究[J]. 筑路机械与施工机械化, 2014, 31(9): 68-71. doi: 10.3969/j.issn.1000-033X.2014.09.027

    GAO Zhi-wei, SONG Wei-wei. Research on durability of emulsified asphalt mixture for micro-surfacing[J]. Road Machinery and Construction Mechanization, 2014, 31(9): 68-71. (in Chinese) doi: 10.3969/j.issn.1000-033X.2014.09.027
    [4] ZHOU Hai-ping, HOLIKATTI S, VACURA P. Caltrans use of scrap tires in asphalt rubber products: a comprehensive review[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(1): 39-48. doi: 10.1016/S2095-7564(15)30087-8
    [5] 冯虎, 王友刚. 阳离子乳化沥青化学破乳试验研究[J]. 石油沥青, 2012, 26(5): 32-34. doi: 10.3969/j.issn.1006-7450.2012.05.007

    FENG Hu, WANG You-gang. Experimental study on chemical breaking of cationic emulsified asphalt[J]. Petroleum Asphalt, 2012, 26(5): 32-34. (in Chinese) doi: 10.3969/j.issn.1006-7450.2012.05.007
    [6] TAYLOR S E. Thermal destabilisation of bitumen-in-water emulsions—a spinning drop tensiometry study[J]. Fuel, 2011, 90(10): 3028-3039. doi: 10.1016/j.fuel.2011.05.028
    [7] WANG Fa-zhou, LIU Yun-peng, ZHANG Yun-hua, et al. Experimental study on the stability of asphalt emulsion for CA mortar by laser diffraction technique[J]. Construction and Building Materials, 2012, 28(1): 117-121. doi: 10.1016/j.conbuildmat.2011.07.059
    [8] WANG Fa-zhou, LIU Yun-peng, HU Shu-guang. Effect of early cement hydration on the chemical stability of asphalt emulsion[J]. Construction and Building Materials, 2013, 42: 146-151. doi: 10.1016/j.conbuildmat.2013.01.009
    [9] XIA Li-xin, LU Shi-wei, CAO Guo-ying. Stability and demulsification of emulsions stabilized by asphaltenes or resins[J]. Journal of Colloid and Interface Science, 2004, 271(2): 504-506. doi: 10.1016/j.jcis.2003.11.027
    [10] FORTUNY M, OLIVEIRA C B Z, MELO R L F V, et al. Effect of salinity, temperature, water content, and pH on the microwave demulsification of crude oil emulsions[J]. Energy and Fuels, 2007, 21(3): 1358-1364. doi: 10.1021/ef0603885
    [11] BORGES B, RONDóN M, SERENO O, et al. Breaking of water-in-crude-oil emulsions. 3. influence of salinity and water-oil ratio on demulsifier action[J]. Energy and Fuels, 2009, 23(3): 1568-1574. doi: 10.1021/ef8008822
    [12] 蒋玮, 肖晶晶, 王振军. 水泥对微表处混合料性能影响规律及作用机理[J]. 武汉理工大学学报: 交通科学与工程版, 2012, 36(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201201002.htm

    JIANG Wei, XIAO Jing-jing, WANG Zhen-jun. Influence law of cement on the performance of microsurfacing mixture and its mechanism[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2012, 36(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201201002.htm
    [13] SONG H, DO J, SOH Y. Feasibility study of asphalt-modified mortars using asphalt emulsion[J]. Construction and Building Materials, 2006, 20(5): 332-337. doi: 10.1016/j.conbuildmat.2005.01.027
    [14] LU Dan, ZHENG Chuan-feng, QIN Yong, et al. Analysing the effects of the mesoscopic characteristics of mineral powder fillers on the cohesive strength of asphalt mortars at low temperatures[J]. Construction and Building Materials, 2014, 65: 330-337. doi: 10.1016/j.conbuildmat.2014.04.123
    [15] 郭乃胜, 尤占平, 赵颖华, 等. 温拌再生沥青混合料耐久性能[J]. 中国公路学报, 2014, 27(8): 17-22. doi: 10.3969/j.issn.1001-7372.2014.08.003

    GUO Nai-sheng, YOU Zhan-ping, ZHAO Ying-hua, et al. Durability of warm mix asphalt containing recycled asphalt mixtures[J]. China Journal of Highway and Transport, 2014, 27(8): 17-22. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.08.003
    [16] 陈静云, 孙依人, 张岩, 等. 沥青混合料动态粘弹性行为分析的模拟方法[J]. 中国公路学报, 2014, 27(8): 11-16. doi: 10.3969/j.issn.1001-7372.2014.08.002

    CHEN Jing-yun, SUN Yi-ren, ZHANG Yan, et al. Modeling method for analysis of dynamic viscoelastic behavior of asphalt mixture[J]. China Journal of Highway and Transport, 2014, 27(8): 11-16. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.08.002
    [17] 王朝辉, 李彦伟, 葛娟, 等. Tourmaline改性沥青及其混合料热拌减排性能[J]. 中国公路学报, 2014, 27(11): 17-24. doi: 10.3969/j.issn.1001-7372.2014.11.003

    WANG Chao-hui, LI Yan-wei, GE Juan, et al. Emission reduction effect of tourmaline modified asphalt and its mixtures under condition of hot-mix[J]. China Journal of Highway and Transport, 2014, 27(11): 17-24. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.11.003
    [18] 冯忠绪, 李学武, 刘治文. 混合料搅拌设备筛孔尺寸优化配置[J]. 中国公路学报, 2014, 27(10): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201410021.htm

    FENG Zhong-xu, LI Xue-wu, LIU Zhi-wen. Optimal configuration for size of screen hole in asphalt mixing plant[J]. China Journal of Highway and Transport, 2014, 27(10): 121-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201410021.htm
    [19] 谭忆秋, 任俊达, 邢超, 等. 基于细观尺度的沸石沥青结构分析[J]. 中国公路学报, 2014, 27(4): 1-8. doi: 10.3969/j.issn.1001-7372.2014.04.001

    TAN Yi-qiu, REN Jun-da, XING Chao, et al. Analysis on meso-structure of zeolite asphalt[J]. China Journal of Highway and Transport, 2014, 27(4): 1-8. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.04.001
    [20] ÇELEKLI A, BALCI M, BOZKURT H. Modelling of scenedesmus obliquus; function of nutrients with modified Gompertz model[J]. Bioresource Technology, 2008, 99(18): 8742-8747. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201907020.htm
    [21] 傅珍, 延西利, 蔡婷, 等. 三角形坐标系下沥青组分与黏度、黏附性关系[J]. 交通运输工程学报, 2014, 14(3): 1-7. doi: 10.3969/j.issn.1671-1637.2014.03.005

    FU Zhen, YAN Xi-li, CAI Ting, et al. Relationship among asphalt component, viscosity and adhesion in triangular coordinate system[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 1-7. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.03.005
    [22] 李晓燕, 平路, 汪海年, 等. 基于国内外试验方法的橡胶沥青性能测试[J]. 交通运输工程学报, 2015, 15(1): 10-17. doi: 10.3969/j.issn.1671-1637.2015.01.002

    LI Xiao-yan, PING Lu, WANG Hai-nian, et al. Performance test of rubber asphalt based on domestic and abroad test methods[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 10-17. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.01.002
    [23] ROMERO N, CáRDENAS A, HENRíQUEZ M, et al. Viscoelastic properties and stability of highly concentrated bitumen in water emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 204(1-3): 271-284. https://www.sciencedirect.com/science/article/pii/S0927775702000183
    [24] TADROS T. Viscoelastic properties of sterically stabilised emulsions and their stability[J]. Advances in Colloid and Interface Science, 2015, 222: 692-708. doi: 10.1016/j.cis.2015.03.001
    [25] OUYANG Jian, TAN Yi-qiu, LI Yun-liang, et al. Demulsi-fication process of asphalt emulsion in fresh cement-asphalt emulsion paste[J]. Materials and Structures, 2014: 1-9. DOI: 10.1617/s11527-014-0446-9.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  881
  • HTML全文浏览量:  106
  • PDF下载量:  983
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-21
  • 刊出日期:  2015-10-25

目录

    /

    返回文章
    返回