留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车隧道交会压力波特性

梅元贵 孙建成 许建林 周朝晖

梅元贵, 孙建成, 许建林, 周朝晖. 高速列车隧道交会压力波特性[J]. 交通运输工程学报, 2015, 15(5): 34-43. doi: 10.19818/j.cnki.1671-1637.2015.05.005
引用本文: 梅元贵, 孙建成, 许建林, 周朝晖. 高速列车隧道交会压力波特性[J]. 交通运输工程学报, 2015, 15(5): 34-43. doi: 10.19818/j.cnki.1671-1637.2015.05.005
MEI Yuan-gui, SUN Jian-cheng, XU Jian-lin, ZHOU Chao-hui. Crossing pressure wave characteristics of high-speed trains in tunnel[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 34-43. doi: 10.19818/j.cnki.1671-1637.2015.05.005
Citation: MEI Yuan-gui, SUN Jian-cheng, XU Jian-lin, ZHOU Chao-hui. Crossing pressure wave characteristics of high-speed trains in tunnel[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 34-43. doi: 10.19818/j.cnki.1671-1637.2015.05.005

高速列车隧道交会压力波特性

doi: 10.19818/j.cnki.1671-1637.2015.05.005
基金项目: 

国家自然科学基金项目 51065013

国家973计划项目 2011CB711101

详细信息
    作者简介:

    梅元贵(1964-), 男, 河南荥阳人, 兰州交通大学教授, 工学博士, 从事列车空气动力学研究

  • 中图分类号: U270.11

Crossing pressure wave characteristics of high-speed trains in tunnel

More Information
    Author Bio:

    MEI Yuan-gui(1964-), male, professor, PhD, +86-931-4938855, meiyuangui@163.com

  • 摘要: 采用基于有限体积方法的计算流体力学软件, 建立了列车几何模型和非定常可压缩湍流的三维流动模型, 对高速列车隧道内等速和不等速交会的全过程进行了数值模拟。在软件的任意滑移界面动网格技术中嵌入了列车光滑启动方法, 研究了列车交会过程中隧道断面的压力波动、流速变化和压力波的形成过程。研究结果表明: 基于三维流动模型的计算结果能够清晰地展示高速列车隧道内交会时的压力场与速度场变化情况, 同一隧道横截面上各点的压力波动趋势与断面压力均值的波动趋势虽然一致, 但不同测点的压力差异较大, 最大可达53.5%;等速交会时隧道中央的交会压力变化幅值最大, 负压峰值达到约-7kPa; 不等速交会时高速列车车体正压峰值与负压峰值均随低速列车速度的减小而减小, 而低速列车比高速列车的正压峰值大约1.5kPa; 两列车鼻尖交会处的隧道断面压力波负压峰值与低速列车速度的二次方近似成正比。

     

  • 图  1  高速列车计算模型

    Figure  1.  Computational model of high-speed train

    图  2  列车头部

    Figure  2.  Train head

    图  3  计算区域

    Figure  3.  Computational domain

    图  4  测点布置

    Figure  4.  Layout of monitoring points

    图  5  多网格划分结果

    Figure  5.  Multi-grid partition result

    图  6  验证结果

    Figure  6.  Validation result

    图  7  压力时间历程

    Figure  7.  Pressure time histories

    图  8  等速交会的压力分布

    Figure  8.  Pressure distribution of constant-speed crossing

    图  9  等速交会的速度分布

    Figure  9.  Velocity distribution of constant-speed crossing

    图  10  交会区域压力比较

    Figure  10.  Pressure comparison in crossing field

    图  11  非交会区域压力比较

    Figure  11.  Pressure comparison beyond crossing field

    图  12  交会位置对车体压力波动的影响

    Figure  12.  Effect of crossing positions on pressure fluctuation of train body

    图  13  车速对车体压力波动的影响

    Figure  13.  Effect of train speeds on pressure fluctuation of train body

    图  14  高速列车与低速列车压力比较

    Figure  14.  Comparison of pressures between higher-speed and lower-speed trains

    图  15  三种工况下的交会压力

    Figure  15.  Crossing pressures in three conditions

    图  16  列车车头交会处测点压力曲线

    Figure  16.  Measuring point pressure curves when train heads crossing

    图  17  t1=0.592 3s的压力与速度分布

    Figure  17.  Pressure and velocity distributions at t1=0.592 3s

    图  18  t2=0.601 3s的压力与速度分布

    Figure  18.  Pressure and velocity distributions at t2=0.601 3s

    图  19  t3=0.613 9s的压力与速度分布

    Figure  19.  Pressure and velocity distributions at t3=0.613 9s

    图  20  t4=0.660 7s的压力与速度分布

    Figure  20.  Pressure and velocity distributions at t4=0.660 7s

    图  21  t5=0.702 1s的压力与速度分布

    Figure  21.  Pressure and velocity distributions at t5=0.702 1s

    图  22  t6=0.712 9s的压力与速度分布

    Figure  22.  Pressure and velocity distributions at t6=0.712 9s

    图  23  t7=0.729 1s的压力与速度分布

    Figure  23.  Pressure and velocity distributions at t7=0.729 1s

    图  24  车速为380/350km·h-1时交会处断面测点压力

    Figure  24.  Pressures at monitoring points on crossing section at 380/350km·h-1

    图  25  交会压力波峰值与车速的拟合关系

    Figure  25.  Fitting relation of crossing pressure peak and train speed

    表  1  拟合结果

    Table  1.   Fitting result

  • [1] 田红旗. 列车交会空气压力波研究及应用[J]. 铁道科学与工程学报, 2004, 1(1): 83-89. doi: 10.3969/j.issn.1672-7029.2004.01.015

    TIAN Hong-qi. Research and applications of air pressure pulse from trains passing each other[J]. Journal of Railway Science and Engineering, 2004, 1(1): 83-89. (in Chinese) doi: 10.3969/j.issn.1672-7029.2004.01.015
    [2] 李人宪, 关永久. 高速列车隧道会车压力波动问题[J]. 机械工程学报, 2012, 48(20): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220025.htm

    LI Ren-xian, GUAN Yong-jiu. Investigation of air pressure pulse when two high-speed trains passing by each other in tunnel[J]. Journal of Mechanical Engineering, 2012, 48(20): 127-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220025.htm
    [3] FUJII K, OGAWA T. Aerodynamics of high speed trains passing by each other[J]. Computers and Fluids, 1995, 24(8): 897-908. doi: 10.1016/0045-7930(95)00024-7
    [4] 王建宇, 万晓燕, 吴剑. 高速铁路隧道内瞬变气压和乘车舒适度准则[J]. 现代隧道技术, 2008, 45(2): 1-5, 10. doi: 10.3969/j.issn.1009-6582.2008.02.001

    WANG Jian-yu, WAN Xiao-yan, WU Jian. Air pressure transient in high speed railway tunnels and passenger comfort criteria[J]. Modern Tunnelling Technology, 2008, 45(2): 1-5, 10. (in Chinese) doi: 10.3969/j.issn.1009-6582.2008.02.001
    [5] 梅元贵, 余南阳, 赵海恒, 等. 高速列车隧道会车压力波的数值分析方法[J]. 铁道学报, 2002, 24(2): 21-25. doi: 10.3321/j.issn:1001-8360.2002.02.005

    MEI Yuan-gui, YU Nan-yang, ZHAO Hai-heng, et al. Numerical method on transient pressure with high speed trains crossing through a tunnel[J]. Journal of the China Railway Society, 2002, 24(2): 21-25. (in Chinese) doi: 10.3321/j.issn:1001-8360.2002.02.005
    [6] 马伟斌, 张千里, 刘艳青. 中国高速铁路隧道气动效应研究进展[J]. 交通运输工程学报, 2012, 12(4): 25-32. doi: 10.3969/j.issn.1671-1637.2012.04.004

    MA Wei-bin, ZHANG Qian-li, LIU Yan-qing. Study evolvement of high-speed railway tunnel aerodynamic effect in China[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 25-32. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.04.004
    [7] TRIEBSTEIN H. Transient pressure measurements at the top of the engine 103 during the passage through the Heitersberg tunnel[C]∥STEPHENS H S, WOOD P A. Proceedings of the Third International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Cranfield: BHRA Fluid Engineering, 1979: 303-324.
    [8] KOMATSU N, YAMADA F, MINAMI T. The reduction of disturbance of the train draft pressure in passing by each other[C]∥Railway Technical Research Institute. The Fourth World Congress on Railway Research. Tokyo: Railway Technical Research Institute, 1999: 1-7.
    [9] MANCINI G, MALFATTI A. Full scale measurements on high speed train ETR500 passing in open air and in tunnels of Italian high speed line[C]∥SCHULTE-WERNING B, GREGOIRE R, MALFATTI A, et al. A European Initiative on Transient Aerodynamics for Railway System Optimization. Berlin: Springer, 2002: 101-122.
    [10] MATSCHKE G, HEINE C. Full scale tests on pressure wave effects in tunnel[C]∥SCHULTE-WERNING B, GREGOIRE R, MALFATTI A, et al. A European Initiative on Transient Aerodynamics for Railway System Optimization. Berlin: Springer, 2002: 187-195.
    [11] 马伟斌, 俞翰斌, 付连著, 等. 某特长水下隧道气动效应试验研究[J]. 中国铁道科学, 2012, 33(1): 41-46. doi: 10.3969/j.issn.1001-4632.2012.01.07

    MA Wei-bin, YU Han-bin, FU Lian-zhu, et al. Experimental research on the aerodynamics effect of an extra-long underwater tunnel[J]. China Rialway Science, 2012, 33(1): 41-46. (in Chinese) doi: 10.3969/j.issn.1001-4632.2012.01.07
    [12] 梅元贵, 余南阳. 高速列车隧道会车压力波的数值模拟[J]. 兰州铁道学院学报, 1998, 17(4): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX804.010.htm

    MEI Yuan-gui, YU Nan-yang. Numerical simulation of high-speed trains induced pressure waves in a single bore tunnel[J]. Journal of Lanzhou Railway Institute, 1998, 17(4): 48-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX804.010.htm
    [13] 李志伟, 梁习锋, 周丹. 快速集装箱平车在明线和隧道内会车时的气动性能[J]. 中南大学学报: 自然科学版, 2008, 39(5): 1029-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200805029.htm

    LI Zhi-wei, LIANG Xi-feng, ZHOU Dan. Aerodynamic performance for container flat wagon passing in open air and in tunnel[J]. Journal of Central South University: Science and Technology, 2008, 39(5): 1029-1034. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200805029.htm
    [14] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001
    [15] CHUNG M H. A level set approach for computing solutions to inviscid compressible flow with moving solid boundary using fixed Cartesian grids[J]. International Journal for Numerical Methods in Fluids, 2001, 36: 373-389. doi: 10.1002/fld.32
    [16] LIU J L. Computations of two passing-by high-speed trains by a relaxation overset-grid algorithm[J]. International Journal for Numerical Methods in Fluids, 2004, 44: 1299-1315. doi: 10.1002/fld.631
    [17] IIDA M, FUKUDA T, KIKUCHI K. Numerical analysis of the pressure wave radiated from the entrance when a train enters a tunnel[J]. Transaction of the Japan Society of Mechanical Engineers, 2000, 66(651): 2861-2868. doi: 10.1299/kikaib.66.651_2861
    [18] MEI Yuan-gui. A generalized numerical simulation method for pressure waves generated by high-speed trains passing through tunnels[J]. Advances in Structural Engineering, 2013, 16(8): 1427-1436. doi: 10.1260/1369-4332.16.8.1427
    [19] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6/7): 469-514.
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  654
  • HTML全文浏览量:  106
  • PDF下载量:  852
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-02
  • 刊出日期:  2015-10-25

目录

    /

    返回文章
    返回