留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多质点模型的重载列车动能闯坡性能

王开云 黄超

王开云, 黄超. 基于多质点模型的重载列车动能闯坡性能[J]. 交通运输工程学报, 2015, 15(5): 50-56. doi: 10.19818/j.cnki.1671-1637.2015.05.007
引用本文: 王开云, 黄超. 基于多质点模型的重载列车动能闯坡性能[J]. 交通运输工程学报, 2015, 15(5): 50-56. doi: 10.19818/j.cnki.1671-1637.2015.05.007
WANG Kai-yun, HUANG Chao. Kinetic energy uphill performance of heavy-haul train based on multi-particle model[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 50-56. doi: 10.19818/j.cnki.1671-1637.2015.05.007
Citation: WANG Kai-yun, HUANG Chao. Kinetic energy uphill performance of heavy-haul train based on multi-particle model[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 50-56. doi: 10.19818/j.cnki.1671-1637.2015.05.007

基于多质点模型的重载列车动能闯坡性能

doi: 10.19818/j.cnki.1671-1637.2015.05.007
基金项目: 

国家自然科学基金项目 51478399

中央高校基本科研业务费专项资金项目 2682014CX044

详细信息
    作者简介:

    王开云(1974-), 男, 江西萍乡人, 西南交通大学研究员, 工学博士, 从事重载列车动力学研究

  • 中图分类号: U260.131

Kinetic energy uphill performance of heavy-haul train based on multi-particle model

More Information
  • 摘要: 采用列车多质点纵向动力学模型, 研究了列车初速度、列车编组、坡道长度与坡度对列车动能闯坡性能的影响, 并与列车单质点模型进行了对比分析, 然后结合具体算例对比了2种模型在动能闯坡最大牵引质量方面的差异。分析结果表明: 列车闯坡初速度越大, 闯坡性能越优; 列车闯坡性能随列车编组、坡道长度与坡度的增大而变差; 2种模型列车闯坡最低速度的差异随列车闯坡初速度的减小而增加, 初速度为60km·h-1时单质点与多质点模型的列车闯坡最低速度相差5.29km·h-1; 列车编组、坡长与坡度越大, 单质点模型的计算结果越保守; 基于单质点模型的列车最大牵引质量为8 250t, 基于多质点模型的列车最大牵引质量为8 750t, 后者比前者增加了6.1%;建议采用列车多质点纵向动力学模型计算列车动能闯坡最大牵引质量。

     

  • 图  1  列车纵向动力学模型

    Figure  1.  Longitudinal dynamics model of train

    图  2  车辆i的受力

    Figure  2.  Forces of vehicle i

    图  3  钩缓系统模型

    Figure  3.  Model of draft gear system

    图  4  多质点模型计算流程

    Figure  4.  Calculation flow of multi-particle model

    图  5  线路纵断面

    Figure  5.  Vertical section of track

    图  6  机车与车辆的时程曲线

    Figure  6.  Time-history curves of locomotive and vehicles

    图  7  两种模型的闯坡性能对比

    Figure  7.  Uphill performance comparison of two models

    图  8  不同初速度对列车闯坡性能的影响

    Figure  8.  Influence of different initial speeds on train uphill performance

    图  9  不同编组对列车闯坡性能的影响

    Figure  9.  Influence of different marshallings on train uphill performance

    图  10  不同坡长对列车闯坡性能的影响

    Figure  10.  Influence of different slope lengths on train uphill performance

    图  11  不同坡度对列车闯坡性能的影响

    Figure  11.  Influence of different slope gradients on train uphill performance

    图  12  牵引质量试凑法

    Figure  12.  Trial and error method of tractive tonnage

    图  13  单质点模型的牵引质量试凑法

    Figure  13.  Trial and error method for tractive tonnage of single particle model

    图  14  多质点模型的牵引质量试凑法

    Figure  14.  Trial and error method for tractive tonnage of multi-particle model

    表  1  列车编组及线路设置

    Table  1.   Train marshalling and track setting

    表  2  线路参数设置

    Table  2.   Setting of track parameters

    表  3  列车编组与牵引质量

    Table  3.   Train marshalling and tractive tonnage

  • [1] 张波. 襄渝线HXD1型电力机车牵引性能仿真及试验研究[J]. 中国铁道科学, 2012, 33(5): 68-75. doi: 10.3969/j.issn.1001-4632.2012.05.11

    ZHANG Bo. Simulation and test study on the traction performance of HXD1 electric locomotive on Xiang-Yu Line[J]. China Railway Science, 2012, 33(5): 68-75. (in Chinese) doi: 10.3969/j.issn.1001-4632.2012.05.11
    [2] 闫永平, 吴宜诚. 重载列车途停原因分析及对策[J]. 铁道机车车辆, 2010, 30(4): 83-86. doi: 10.3969/j.issn.1008-7842.2010.04.023

    YAN Yong-ping, WU Yi-cheng. Analysis on heavy haul train in-section halt and its countermeasures[J]. Railway Locomotive and Car, 2010, 30(4): 83-86. (in Chinese) doi: 10.3969/j.issn.1008-7842.2010.04.023
    [3] 董雪婷, 黄超. 大功率交流传动电力机车牵引特性分析[J]. 兰州交通大学学报, 2010, 29(1): 90-94. doi: 10.3969/j.issn.1001-4373.2010.01.022

    DONG Xue-ting, HUANG Chao. Analysis of tractive characteristics of high-power AC transmission electric locomotives[J]. Journal of Lanzhou Jiaotong University, 2010, 29(1): 90-94. (in Chinese) doi: 10.3969/j.issn.1001-4373.2010.01.022
    [4] HOWLETT P. Optimal strategies for the control of a train[J]. Automatica, 1996, 32(4): 519-532. doi: 10.1016/0005-1098(95)00184-0
    [5] LIU R, GOLOVITCHER I M. Enery-efficient operation of rail vehicles[J]. Transportation Research Part A: Policy and Practice, 2003, 37(10): 917-932. doi: 10.1016/j.tra.2003.07.001
    [6] 李广峰. 基于牵引计算的机车优化操纵方案研究与应用[J]. 铁道机车车辆, 2008, 28(5): 48-50. doi: 10.3969/j.issn.1008-7842.2008.05.013

    LI Guang-feng. Research and application of locomotive optimization operation project based on the traction calculation[J]. Railway Locomotive and Car, 2008, 28(5): 48-50. (in Chinese) doi: 10.3969/j.issn.1008-7842.2008.05.013
    [7] 石红国. 线路纵断面化简对列车牵引质量的影响分析[J]. 交通运输工程与信息学报, 2013, 11(4): 45-48. doi: 10.3969/j.issn.1672-4747.2013.04.008

    SHI Hong-guo. Influence of railway longitudinal section simplification on train traction load capacity[J]. Journal of Transportation Engineering and Information, 2013, 11(4): 45-48. (in Chinese) doi: 10.3969/j.issn.1672-4747.2013.04.008
    [8] GEIKE T. Understanding high coupler forces at metro vehicles[J]. Vehicle System Dynamics, 2007, 45(4): 389-396. doi: 10.1080/00423110701215085
    [9] COLE C, SUN Y Q. Simulated comparisons of wagon coupler systems in heavy haul trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220(3): 247-256. doi: 10.1243/09544097JRRT35
    [10] 马卫华, 宋荣荣, 揭长安, 等. 缓冲器阻抗特性对重载列车动力学性能的影响[J]. 交通运输工程学报, 2011, 11(2): 59-64. doi: 10.3969/j.issn.1671-1637.2011.02.010

    MA Wei-hua, SONG Rong-rong, JIE Chang-an, et al. Influences of buffer impedance characteristics on dynamics performances for heavy haul train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 59-64. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.02.010
    [11] PIECHOWIAK T. Verification of pneumatic railway brake models[J]. Vehicle System Dynamics, 2010, 48(3): 283-299. doi: 10.1080/00423110902780622
    [12] 魏伟. 列车空气制动系统仿真的有效性[J]. 中国铁道科学, 2006, 27(5): 104-109. doi: 10.3321/j.issn:1001-4632.2006.05.019

    WEI Wei. The validity of the simulation for train air brake system[J]. China Railway Science, 2006, 27(5): 104-109. (in Chinese) doi: 10.3321/j.issn:1001-4632.2006.05.019
    [13] ANSARI M, ESMAILZADEH E, YOUNESIAN D. Longitudinal dynamics of freight trains[J]. International Journal of Heavy Vehicle Systems, 2009, 16(1/2): 102-131. doi: 10.1504/IJHVS.2009.023857
    [14] NASR A, MOHAMMADI S. The effects of train brake delay time on in-train forces[J]. Proceedings of the Institution ofMechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224(6): 523-534. doi: 10.1243/09544097JRRT306
    [15] 石红国, 彭其渊, 郭寒英. 城市轨道交通牵引计算模型[J]. 交通运输工程学报, 2005, 5(4): 20-26. doi: 10.3321/j.issn:1671-1637.2005.04.005

    SHI Hong-guo, PENG Qi-yuan, GUO Han-ying. Traction calculation model of urban mass transit[J]. Journal of Traffic and Transportation Engineering, 2005, 5(4): 20-26. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.04.005
    [16] ZHUAN X, XIA X. Cruise control scheduling of heavy haul trains[J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 757-766. doi: 10.1109/TCST.2006.872506
    [17] CHOU M, XIA X, KAYSER C. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems[J]. Control Engineering Practice, 2007, 15(4): 501-509. doi: 10.1016/j.conengprac.2006.09.006
    [18] ZHAI Wan-ming. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214. doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
    [19] 黄运华, 李芾, 傅茂海, 等. 缓冲器特性曲线间断点算法比较[J]. 西南交通大学学报, 2005, 40(1): 9-12. doi: 10.3969/j.issn.0258-2724.2005.01.003

    HUANG Yun-hua, LI Fu, FU Mao-hai, et al. Comparison of algorithms for discontinuity on the characteristics curves of draft gears[J]. Journal of Southwest Jiaotong University, 2005, 40(1): 9-12. (in Chinese) doi: 10.3969/j.issn.0258-2724.2005.01.003
    [20] WANG Kai-yun, HUANG Chao, ZHAI Wan-ming, et al. Progress on wheel-rail dynamic performance of railway curve negotiation[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 209-220. doi: 10.1016/S2095-7564(15)30104-5
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  79
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-20
  • 刊出日期:  2015-10-25

目录

    /

    返回文章
    返回