留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中重型卡车催化消声器流场特性

徐晓明 江浩斌 宫燃

徐晓明, 江浩斌, 宫燃. 中重型卡车催化消声器流场特性[J]. 交通运输工程学报, 2015, 15(5): 65-71. doi: 10.19818/j.cnki.1671-1637.2015.05.009
引用本文: 徐晓明, 江浩斌, 宫燃. 中重型卡车催化消声器流场特性[J]. 交通运输工程学报, 2015, 15(5): 65-71. doi: 10.19818/j.cnki.1671-1637.2015.05.009
XU Xiao-ming, JIANG Hao-bin, GONG Ran. Flow field characteristics of catalytic muffler for medium-heavy duty truck[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 65-71. doi: 10.19818/j.cnki.1671-1637.2015.05.009
Citation: XU Xiao-ming, JIANG Hao-bin, GONG Ran. Flow field characteristics of catalytic muffler for medium-heavy duty truck[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 65-71. doi: 10.19818/j.cnki.1671-1637.2015.05.009

中重型卡车催化消声器流场特性

doi: 10.19818/j.cnki.1671-1637.2015.05.009
基金项目: 

国家自然科学基金项目 51275211

中国博士后科学基金项目 2014M561582

江苏省自然科学基金项目 BK20140559

详细信息
    作者简介:

    徐晓明(1982-), 男, 浙江杭州人, 江苏大学副教授, 工学博士, 从事汽车空气动力学研究

  • 中图分类号: U464.134

Flow field characteristics of catalytic muffler for medium-heavy duty truck

More Information
  • 摘要: 运用Fluent软件计算了不同进气端结构和形状的中重型卡车催化消声器载体前端面进气均匀性和进出口总压差, 分析了其流场特性。计算结果表明: 催化消声器流场特性与发动机排气量有关, 载体前端面进气均匀性和进出口总压差对于分析流场特性至关重要; 添加挡板后载体前端面进气均匀性和进出口总压差均增大, 添加竖挡板的流场特性最佳; 进气管直径收缩40mm和排气管直径扩张40mm的流场特性较好; 当发动机转速分别为900、1 900r·min-1时, 催化消声器优化后载体前端面进气均匀性比优化前分别提高了1.2%、1.6%, 进出口总压差比优化前分别降低了57.5%、63.9%, 结构优化对降低进出口总压差效果明显; 与桶型催化消声器相比, 箱型催化消声器的载体前端面进气均匀性增加; 选择催化消声器还应考虑空间布置与利用效率。

     

  • 图  1  模型1

    Figure  1.  Model 1

    图  2  模型网格划分

    Figure  2.  Mesh partition of model

    图  3  催化消声器迹线

    Figure  3.  Path lines of catalytic muffler

    图  4  纵切面速度矢量

    Figure  4.  Speed vectors of longitudinal section

    图  5  载体前端面压力

    Figure  5.  Pressure of carrier front face

    图  6  模型2

    Figure  6.  Model 2

    图  7  模型3

    Figure  7.  Model 3

    图  8  模型4

    Figure  8.  Model 4

    图  9  模型5

    Figure  9.  Model 5

    图  10  模型4的迹线

    Figure  10.  Path lines of model 4

    图  11  模型5的迹线

    Figure  11.  Path lines of model 5

    图  12  不同进气管直径模型

    Figure  12.  Models with different inlet pipe diameters

    图  13  不同排气管直径模型

    Figure  13.  Models with different outlet pipe diameters

    图  14  优化后的桶型催化消声器模型

    Figure  14.  Barrel shape catalytic muffler model after optimization

    图  15  箱型催化消声器模型

    Figure  15.  Box shape catalytic muffler model

    图  16  箱型催化消声器迹线

    Figure  16.  Path lines of box shape catalytic muffler

    表  1  发动机排气参数

    Table  1.   Parameters of engine exhaust

    表  2  桶形催化消声器流场特性

    Table  2.   Flow field characteristics of barrel shape catalytic muffler

    表  3  模型1~3的前端面进气均匀性

    Table  3.   Air inlet uniformities of front faces for models 1-3

    表  4  模型1~3的进出口总压差

    Table  4.   Total pressure differences between inlets and outlets for models 1-3

    表  5  模型1、4、5的前端面进气均匀性

    Table  5.   Air inlet uniformities of front faces for models 1, 4, 5

    表  6  模型1、4、5的进出口总压差

    Table  6.   Total pressure differences between inlets and outlets for models 1, 4, 5

    表  7  不同进气管直径的载体前端面进气均匀性

    Table  7.   Air inlet uniformities of carrier front faces for different inlet pipe diameters

    表  8  不同进气管直径的进出口总压差

    Table  8.   Total pressure differences between inlets and outlets for different inlet pipe diameters

    表  9  不同排气管直径的载体前端面进气均匀性

    Table  9.   Air inlet uniformities of carrier front faces for different outlet pipe diameters

    表  10  不同排气管直径的进出口总压差

    Table  10.   Total pressure differences between inlets and outlets for different outlet pipe diameters

    表  11  转速为900r·min-1时的流场特性比较

    Table  11.   Comparison of flow field characteristics with rotation speed of 900r·min-1

    表  12  转速为1900r·min-1时的流场特性比较

    Table  12.   Comparison of flow field characteristics with rotation speed of 1 900r·min-1

    表  13  两种催化消声器流场特性比较

    Table  13.   Comparison of flow field characteristics for two types of catalytic mufflers

  • [1] SABBAH R, KIZILEL R, SELMAN J R, et al. Active(air-cooled)vs. passive(phase change material)thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2): 630-638. doi: 10.1016/j.jpowsour.2008.03.082
    [2] XU Xiao-ming, HE Ren. Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 301-315. doi: 10.1016/j.rser.2013.08.057
    [3] 杨帆, 胡阳洋, 王建华. 重型卡车风阻优化[J]. 交通运输工程学报, 2013, 13(6): 54-60. doi: 10.3969/j.issn.1671-1637.2013.06.008

    YANG Fan, HU Yang-yang, WANG Jian-hua. Optimization of wind resistance for heavy truck[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6): 54-60. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.06.008
    [4] 尹和俭. 紧凑式SCR净化消声装置设计与仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.

    YIN He-jian. Study on design and simulation of compact SCR purified noise reduction devices[D]. Harbin: Harbin Engineering University, 2010. (in Chinese)
    [5] HOWITT J S, SEKELLA T C. Flow effects in monolithic honeycomb automotive catalytic converters[J]. SAE Technical Papers, 1974, 83: 1067-1075.
    [6] JEONG S J, KIM W S, KIM T. An application of CFD to improve warm-up performance of the 3-way auto-catalyst by high surface area and low thermal mass[J]. International Journal of Vehicle Design, 2002, 29(3): 243-268. doi: 10.1504/IJVD.2002.002012
    [7] CHEN Ping-en, WANG Jun-min. Air-fraction modeling for simultaneous diesel engine NOX and PM emissions control during active DPF regenerations[J]. Applied Energy, 2014, 122: 310-320. doi: 10.1016/j.apenergy.2014.02.031
    [8] HU Y, GALLAND M A, CHEN K. Acoustic transmission performance of double-wall active sound packages in a tube: numerical/experimental validations[J]. Applied Acoustics, 2012, 73(4): 323-337. doi: 10.1016/j.apacoust.2011.10.003
    [9] LIU Lian-yun, HAO Zhi-yong, LIU Chi. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise[J]. Journal of Zhejiang University Science A: Applied Physics and Engineering, 2012, 13(9): 709-716.
    [10] LEE S J, JEONG S J, KIM W S. Numerical design of the diesel particulate filter for optimum thermal performances during regeneration[J]. Applied Energy, 2009, 86(7/8): 1124-1135.
    [11] PANIGRAHI S N, MUNJAL M L. Back pressure considerations in designing of cross flow perforated-element reactive silencers[J]. Noise Control Engineering Journal, 2007, 55(6): 504-515. doi: 10.3397/1.2817808
    [12] KOJIMA N, NAKAMURA Y, FUKUDA M. A study on the correlation between fluctuating velocity in a muffler and air flow noise[J]. JSME International Journal, 1987, 30(265): 1113-1120. doi: 10.1299/jsme1987.30.1113
    [13] 帅石金, 王建昕, 庄人隽, 等. 车用催化器流场数值模拟及其在结构优化设计中的应用[J]. 内燃机学报, 2002, 20(2): 211-216. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200002024.htm

    SHUAI Shi-jin, WANG Jian-xin, ZHUANG Ren-jun, et al. Numerical simulation of flows in automotive catalytic converters and its application on optimum structure design[J]. Transactions of CSICE, 2002, 20(2): 211-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200002024.htm
    [14] 刘军, 苏清祖. 排气催化转化器气流分布的数值模拟和试验[J]. 农业工程学报, 2003, 19(1): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200301025.htm

    LIU Jun, SU Qing-zu. Numerical simulation and testing research on flow distribution in catalytic converter[J]. Transactions of the CSAE, 2003, 19(1): 95-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200301025.htm
    [15] 谷芳, 刘伯潭, 李洪亮, 等. 基于CFD数值模拟的汽车排气系统结构分析[J]. 内燃机学报, 2007, 25(4): 358-363. doi: 10.3321/j.issn:1000-0909.2007.04.012

    GU Fang, LIU Bo-tan, LI Hong-liang, et al. Structural analyses for the vehicle exhausts system based on CFD simulation[J]. Transactions of CSICE, 2007, 25(4): 358-363. (in Chinese) doi: 10.3321/j.issn:1000-0909.2007.04.012
    [16] 袭著坤. 重载柴油机选择性催化消声器的设计研究[D]. 太原: 太原理工大学, 2009.

    XI Zhu-kun. Research and designing of selective reduction catalyst converter combined with silencer for heavy duty diesel engine[D]. Taiyuan: Taiyuan University of Technology, 2009. (in Chinese)
    [17] 白丹丹. Urea-SCR催化器系统的仿真与研究[D]. 大连: 大连理工大学, 2012.

    BAI Dan-dan. Modeling and research of Urea-SCR exhaust system[D]. Dalian: Dalian University of Technology, 2012. (in Chinese)
    [18] 葛继伟, 王志. 不同进/出口分布的消声器性能研究[J]. 机械制造与自动化, 2015, 44(2): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201502003.htm

    GE Ji-wei, WANG Zhi. Analysis of expansion muffler performance with different inlet/outlet distribution[J]. Machine Building and Automation, 2015, 44(2): 7-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201502003.htm
    [19] 黎苏, 葛蕴珊, 黎志勤, 等. 抗性消声器的三维声学边界元模型及其应用[J]. 内燃机学报, 1992, 10(2): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX199202008.htm

    LI Su, GE Yun-shan, LI Zhi-qin, et al. A three-dimensional acoustic boundary element model of the reactive mufflers and its application[J]. Transactions of CSICE, 1992, 10(2): 147-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX199202008.htm
    [20] 伏军, 龚金科, 袁文华, 等. 微粒捕集器再生背压阈值MAP图建立及其应用[J]. 农业工程学报, 2013, 29(12): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201312009.htm

    FU Jun, GONG Jin-ke, YUAN Wen-hua, et al. Establi-shment and application of MAP for regeneration back-pressure threshold value of diesel particulate filter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(12): 47-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201312009.htm
  • 加载中
图(16) / 表(13)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  131
  • PDF下载量:  629
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-16
  • 刊出日期:  2015-10-25

目录

    /

    返回文章
    返回