留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铺设拼装式铝合金道面板的道面结构加载性能

蔡良才 周少辉 许巍 岑国平 杨文山

蔡良才, 周少辉, 许巍, 岑国平, 杨文山. 铺设拼装式铝合金道面板的道面结构加载性能[J]. 交通运输工程学报, 2015, 15(6): 1-9. doi: 10.19818/j.cnki.1671-1637.2015.06.001
引用本文: 蔡良才, 周少辉, 许巍, 岑国平, 杨文山. 铺设拼装式铝合金道面板的道面结构加载性能[J]. 交通运输工程学报, 2015, 15(6): 1-9. doi: 10.19818/j.cnki.1671-1637.2015.06.001
CAI Liang-cai, ZHOU Shao-hui, XU Wei, CEN Guo-ping, YANG Wen-shan. Loading performances of pavement with assembled aluminum mats[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 1-9. doi: 10.19818/j.cnki.1671-1637.2015.06.001
Citation: CAI Liang-cai, ZHOU Shao-hui, XU Wei, CEN Guo-ping, YANG Wen-shan. Loading performances of pavement with assembled aluminum mats[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 1-9. doi: 10.19818/j.cnki.1671-1637.2015.06.001

铺设拼装式铝合金道面板的道面结构加载性能

doi: 10.19818/j.cnki.1671-1637.2015.06.001
基金项目: 

国家自然科学基金项目 51578580

军队科研项目 CKJ13C028

详细信息
    作者简介:

    蔡良才(1960-), 男, 浙江宁波人, 空军工程大学教授, 工学博士, 从事机场道面研究

  • 中图分类号: U416.212

Loading performances of pavement with assembled aluminum mats

More Information
    Author Bio:

    CAI Liang-cai(1960-), male, professor, PhD, +86-29-84787008, Liangcai07@126.com

  • 摘要: 对拼装式铝道面板试样进行了四点弯曲试验以检测其强度。修建了2条不同强度的土质试验段, 分别铺设了4种不同厚度与强度的蜂窝铝夹芯道面板, 构建了不同类型的简易机场拼装式铝道面板道面结构, 采用加载车模拟轻型与重型飞机荷载, 以最大车辙达到30mm与20%的道面板出现损坏作为控制标准, 测试了拼装式道面板道面结构在不同轮载作用次数下的变形与表面车辙。试验结果表明: 道面板1~4的有效综合模量分别为1 616、1 862、2 064、2 328 MPa; 当道面板1~4分别铺设在单层稳定土基层上时, 采用75kN荷载作用, 400次通行后各道面结构的竖向变形分别为35、19、10、12mm, 500次通行后各道面结构最大相对车辙分别为50、28、16、10mm; 当道面板铺设在双层稳定土基层上时, 采用150kN通行荷载作用, 1 000次通行后铺设道面板4的道面结构的竖向变形仅为16mm, 铺设道面板3、4的道面结构的最大相对车辙分别为36、24mm, 道面板横向连接处易凹陷。可见, 在相同基层条件与通行荷载作用下, 采用3003型铝合金材料构造的道面板1相对采用6A02型铝合金材料构造的道面板2~4更易损坏, 相应的道面结构也更易失效; 道面板2~4铺设在单层稳定土基层上能满足轻型飞机低架次通行要求, 道面板4铺设在双层稳定土基层上能够满足重型飞机的使用要求。

     

  • 图  1  试验道面板构型

    Figure  1.  Test mat structure

    图  2  加载试验

    Figure  2.  Loading test

    图  3  试验段尺寸

    Figure  3.  Sizes of test sections

    图  4  试验段结构

    Figure  4.  Structures of test sections

    图  5  土质试验段

    Figure  5.  Soil test sections

    图  6  加载车

    Figure  6.  Load cart

    图  7  加载试验

    Figure  7.  Loading test

    图  8  测点布置

    Figure  8.  Distribution of measuring points

    图  9  道面结构A~D竖向变形

    Figure  9.  Vertical deformations of pavements A-D

    图  10  道面结构a~d竖向变形

    Figure  10.  Vertical deformations of pavements a-d

    图  11  道面结构a竖向变形横向分布

    Figure  11.  Lateral distributions of vertical deformations of pavement a

    图  12  道面结构b竖向变形横向分布

    Figure  12.  Lateral distributions of vertical deformations of pavement b

    图  13  道面结构c竖向变形横向分布

    Figure  13.  Lateral distributions of vertical deformations of pavement c

    图  14  道面结构d竖向变形横向分布

    Figure  14.  Lateral distributions of vertical deformationsof pavement d

    图  15  土质基层表面

    Figure  15.  Soil base surface

    表  1  试验道面板参数

    Table  1.   Parameters of test mats

    表  2  土的基本性能

    Table  2.   Basic performances of soil

    表  3  土壤稳定剂性能

    Table  3.   Performances of soil stabilizer

    表  4  石灰技术性能

    Table  4.   Technical performances of lime

    表  5  道面板变形

    Table  5.   Mat deformations

    表  6  基层与土基压缩变形

    Table  6.   Compressive deformations of bases and subgrades

    表  7  道面结构A~D相对车辙

    Table  7.   Relative ruts of pavements A-D

    表  8  道面结构a~d相对车辙

    Table  8.   Relative ruts of pavements a-d

  • [1] DOVER M D, ANDERSON M, BROWN R W. Recent advances in matting technology for military runways[C]∥ASCE. The 27th Annual International Air Transport Conference. Reston: ASCE, 2002: 1-10.
    [2] COE C J, READ D L, MYERS J A. Mat instrumentation, finite-element analysis, and mat anchoring system reliability study, volumeⅡ[R]. Panama City: Tyndall Air Force Base, 1988.
    [3] 魏武. 野战机场道面材料与结构型式研究[D]. 西安: 空军工程大学, 2002.

    WEI Wu. Research on matting material and configuration used in expedient airfield[D]. Xi’an: Air Force Engineering University, 2002. (in Chinese).
    [4] SMITH J C, GONZALEZ C R, SMITH D M. Analysis of Korean F-16aircraft opearating on AM-2landing mat[R]. Vicksburg: US Army Corps of Engineers, 1997.
    [5] 赵文奇. 稳定土技术在野战机场中的应用研究[D]. 西安: 空军工程大学, 2003.

    ZHAO Wen-qi. Research on reinforced soil in construction of expedient airfield[D]. Xi'an: Air Force Engineering University, 2003. (in Chinese).
    [6] FORST D C. Decks for rapid runway mat application[R]. Dayton: Wright-Patterson AFB, 2007.
    [7] 程传龙. 拼装式铝蜂窝道面板的设计及力学性能研究[D]. 西安: 空军工程大学, 2014.

    CHENG Chuan-long. Aluminum honeycomb matting system design and mechanics test[D]. Xi’an: Air Force Engineering University, 2014. (in Chinese).
    [8] MERRITT D K, CULLOUGH F M, BURNS N H, et al. The feasibility of using precast concrete panels to expedited highway pavement construction[R]. Austin: Texas Department of Transportation, 2000.
    [9] CHANG L, CHEN Y T, LEE S. Using precast concrete panels for pavement construction in Indiana[R]. West Lafayette: Purdue University, 2004.
    [10] Ministry of Defence. Concrete block paving for airfields[R]. West Midlands: Ministry of Defence, 2005.
    [11] PRIDDYA L P, BLYA P G, JACKSONB C J, et al. Fullscale field testing of precast portland cement concrete panel airfield pavement repairs[J]. International Journal of Pavement Engineering, 2014, 15(9): 840-853. doi: 10.1080/10298436.2014.893320
    [12] SAPOZHNIKOV N, ROLLINGS R. Soviet precast prestressed construction for airfields[C]∥FAA. 2007Worldwide Airport Technology Transfer Conference. Atlantic City: FAA, 2007: 1-11.
    [13] GARTRELL C A. Full scale instrumented testing and analysis of matting systems for airfield parking ramps and taxiways[R]. Vicksburg: US Army Corps of Engineers, 2007.
    [14] GARTRELL C A, NEWMAN J K, ANDERTON G L. Performance measurements of pavement matting systems by full-scale testing over differing soil strengths[J]. Journal of Materials in Civil Engineering, 2009, 21(10): 561-568. doi: 10.1061/(ASCE)0899-1561(2009)21:10(561)
    [15] DOYLE J D, HOWARD I L, GARTRELL C A. Full-scale instrumented testing and three-dimensional modeling of airfield matting systems[J]. International Journal of Geomechanics, 2014, 14(2): 161-170. doi: 10.1061/(ASCE)GM.1943-5622.0000272
    [16] 史保华, 宁文溥, 许巍, 等. 抗耐土壤稳定剂在简易机场道面中的应用[J]. 交通运输工程学报, 2013, 13(2): 25-33. doi: 10.3969/j.issn.1671-1637.2013.02.004

    SHI Bao-hua, NING Wen-pu, XU Wei, et al. Application of con-aid stabilizer in expedient airfield pavement[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 25-33. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.02.004
    [17] 戴圣睿. 抗耐土壤稳定剂在简易机场中的应用研究[D]. 西安: 空军工程大学, 2011.

    DAI Sheng-rui. Research on application of con-aid stabilizer in expedient airfield pavement[D]. Xi’an: Air Force Engineering University, 2011. (in Chinese).
    [18] 岑国平, 程传龙, 许巍, 等. 铝蜂窝道面板承载能力试验[J]. 空军工程大学学报: 自然科学版, 2014, 15(4): 1-4. doi: 10.3969/j.issn.1009-3516.2014.04.001

    CEN Guo-ping, CHENG Chuan-long, XU Wei, et al. Experimental study on the bearing capacity of the aluminum honeycomb sandwich panel[J]. Journal of Air Force Engineering University: Natural Science Edition, 2014, 15(4): 1-4. (in Chinese). doi: 10.3969/j.issn.1009-3516.2014.04.001
    [19] 张献民, 董倩, 吕耀志. 机主起落架构型对道面力学响应的影响[J]. 西南交通大学学报, 2014, 49(4): 675-681. doi: 10.3969/j.issn.0258-2724.2014.04.018

    ZHANG Xian-min, DONG Qian, LU Yao-zhi. Mechanical responses of pavement under aircrafts with different main landing gears[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 675-681. (in Chinese). doi: 10.3969/j.issn.0258-2724.2014.04.018
    [20] 张献民, 薛华鑫, 董倩, 等. 飞机跑道荷载响应深度变化规律[J]. 北京航空航天大学学报, 2014, 40(4): 427-432. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201404001.htm

    ZHAN Xian-min, XUE Hua-xin, DONG Qian, et al. Influencing depth under aircraft loads of runway[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4): 427-432. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201404001.htm
    [21] 单景松, 李惠, 蒋含莞. 嵌锁块路面受力特性与设计方法[J]. 交通运输工程学报, 2015, 15(4): 9-17. http://transport.chd.edu.cn/article/id/201504002

    SHAN Jing-song, LI Hui, JIANG Han-wan. Mechanical characteristics and design method of interlocking concrete block pavement[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 9-17. (in Chinese). http://transport.chd.edu.cn/article/id/201504002
    [22] 韩千永. 容器用3003铝合金箔的研制[J]. 轻合金加工技术, 2010, 38(6): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201006007.htm

    HAN Qian-yong. Development of 3003aluminum alloy foil for containers[J]. Light Alloy Fabrication Technology, 2010, 38(6): 29-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201006007.htm
    [23] GONZALEZ C R, RUSHING T W. Development of a new design methodology for structural airfield mats[J]. International Journal of Pavement Research and Technology, 2010, 3(3): 102-109.
    [24] 黄伟业, 张亚璊, 操兵, 等. 公路飞机跑道沥青道面受力分析与承载能力检测方法[J]. 筑路机械与施工机械化, 2015, 32(11): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201511028.htm

    HUANG Wei-ye, ZHANG Ya-men, CAO Bing, et al. Force analysis and bearing capacity test of asphalt pavement of highway runway[J]. Road Machinery and Construction Mechanization, 2015, 32(11): 63-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201511028.htm
    [25] 王振辉, 蔡良才, 刘晓军, 等. 机场薄层沥青道面荷载应力和位移分析[J]. 空军工程大学学报: 自然科学版, 2007, 8(5): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC200705002.htm

    WANG Zhen-hui, CAI Liang-cai, LIU Xiao-jun, et al. An analysis of airfield thin layer asphalt pavement for loading stress and displacement[J]. Journal of Air Force Engineering University: Natural Science Edition, 2007, 8(5): 9-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC200705002.htm
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  1014
  • HTML全文浏览量:  147
  • PDF下载量:  818
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-12
  • 刊出日期:  2015-06-25

目录

    /

    返回文章
    返回