留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三线合一、三塔悬索桥风-车-桥耦合振动性能对比

李永乐 徐昕宇 严乃杰 邓江涛 向活跃

李永乐, 徐昕宇, 严乃杰, 邓江涛, 向活跃. 三线合一、三塔悬索桥风-车-桥耦合振动性能对比[J]. 交通运输工程学报, 2015, 15(6): 17-25. doi: 10.19818/j.cnki.1671-1637.2015.06.003
引用本文: 李永乐, 徐昕宇, 严乃杰, 邓江涛, 向活跃. 三线合一、三塔悬索桥风-车-桥耦合振动性能对比[J]. 交通运输工程学报, 2015, 15(6): 17-25. doi: 10.19818/j.cnki.1671-1637.2015.06.003
LI Yong-le, XU Xin-yu, YAN Nai-jie, DENG Jiang-tao, XIANG Huo-yue. Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 17-25. doi: 10.19818/j.cnki.1671-1637.2015.06.003
Citation: LI Yong-le, XU Xin-yu, YAN Nai-jie, DENG Jiang-tao, XIANG Huo-yue. Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 17-25. doi: 10.19818/j.cnki.1671-1637.2015.06.003

三线合一、三塔悬索桥风-车-桥耦合振动性能对比

doi: 10.19818/j.cnki.1671-1637.2015.06.003
基金项目: 

国家自然科学基金项目 U1334201

国家自然科学基金项目 51278434

详细信息
    作者简介:

    李永乐(1972-), 男, 河南洛阳人, 西南交通大学教授, 工学博士, 从事大跨度桥梁风致振动及车桥耦合振动研究

  • 中图分类号: U441.3

Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge

More Information
    Author Bio:

    LI Yong-le(1972-),male,professor,PhD,+86-28-87601119,lele@swjtu.edu.cn

  • 摘要: 以某三线合一、三塔悬索桥的2种设计方案(钢箱桁和钢桁方案)为工程背景, 通过车桥系统节段模型风洞试验, 测试了车辆和桥梁的三分力系数, 并基于风-车-桥系统空间耦合动力学模型, 采用自主研发的桥梁分析软件BANSYS, 对比分析了该桥的结构动力特性与风-车-桥耦合振动性能。分析结果表明: 三线合一、三塔悬索桥结构自振频率较低; 车辆气动力受轨道位置的影响较大, 钢桁方案迎风侧车辆阻力系数约为钢箱桁方案的2.2倍; 当风速为0时, 桥梁、车辆的动力响应总体上是随车速的增大而增大, 在同一车速下, 钢桁方案的桥梁位移较钢箱桁方案大, 主要是由于钢桁方案的桥梁整体刚度略弱于钢箱桁方案; 当考虑风速影响时, 桥梁的横向响应随风速的增大而显著增大; 车辆位于迎风侧, 风速为25m·s-1时, 钢箱桁方案和钢桁方案的桥梁横向位移约分别为风速为15m·s-1时的位移的2.4倍和3.8倍, 横风对桥梁的横向响应起主导作用; 同一风速时钢桁方案的桥梁响应总体上较钢箱桁方案大; 同一方案时车辆响应随风速的增大而增大, 当风速达到25m·s-1时, 车辆动力响应显著增加, 相比15m·s-1时最大增加幅度为71.6%。

     

  • 图  1  桥梁总体布置

    Figure  1.  General layout of bridge

    图  2  钢箱桁方案加劲梁横断面

    Figure  2.  Cross-section of stiffening girder for steel-box-truss scheme

    图  3  钢桁方案加劲梁横断面

    Figure  3.  Cross-section of stiffening girder for steel-truss scheme

    图  4  车辆模型

    Figure  4.  Vehicle model

    图  5  桥梁有限元模型

    Figure  5.  Finite element model of bridge

    图  6  垂向轨道不平顺

    Figure  6.  Vertical track irregularity

    图  7  车桥系统节段模型

    Figure  7.  Section model of vehicle-bridge system

    图  8  加劲梁三分力系数

    Figure  8.  Three-component coefficients of stiffening girder

    图  9  不同车速下的倾覆系数

    Figure  9.  Overturning coefficients at different vehicle speeds

    图  10  不同车速下的脱轨系数

    Figure  10.  Derailment coefficients at different vehicle speeds

    图  11  不同车速下的轮重减载率

    Figure  11.  Wheel unloading rates at different vehicle speeds

    图  12  不同车速下的竖向加速度

    Figure  12.  Vertical accelerations at different vehicle speeds

    图  13  不同车速下的横向加速度

    Figure  13.  Lateral accelerations at different vehicle speeds

    图  14  不同风速下的倾覆系数

    Figure  14.  Overturning coefficients at different wind speeds

    图  15  不同风速下的脱轨系数

    Figure  15.  Derailment coefficients at different wind speeds

    图  16  不同风速下的轮重减载率

    Figure  16.  Wheel unloading rates at different wind speeds

    图  17  不同风速下的竖向加速度

    Figure  17.  Vertical accelerations at different wind speeds

    图  18  不同风速下的横向加速度

    Figure  18.  Lateral accelerations at different wind speeds

    表  1  桥梁自振频率与振型描述

    Table  1.   Natural frequencies and vibration mode descriptions of bridge

    表  2  车辆三分力系数

    Table  2.   Three-component coefficients of vehicle

    表  3  不同车速下的桥梁响应

    Table  3.   Bridge responses at different vehicle speeds

    表  4  不同风速下的桥梁响应

    Table  4.   Bridge responses at different wind speeds

  • [1] YOSHIDA O, OKUDA M, MORIYA T. Structural characteristics and applicability of four-span suspension bridge[J]. Journal of Bridge Engineering, 2004, 9(5): 453-463. doi: 10.1061/(ASCE)1084-0702(2004)9:5(453)
    [2] 肖汝诚, 姜洋, 项海帆. 缆索承重桥的体系比选[J]. 同济大学学报: 自然科学版, 2013, 41(2): 179-185, 207. doi: 10.3969/j.issn.0253-374x.2013.02.004

    XIAO Ru-cheng, JIANG Yang, XIANG Hai-fan. Comparison between structural systems of cable supported bridges[J]. Journal of Tongji University: Natural Science, 2013, 41(2): 179-185, 207. (in Chinese). doi: 10.3969/j.issn.0253-374x.2013.02.004
    [3] NAZIR C P. Multispan balanced suspension bridge[J]. Journal of Structural Engineering, 1986, 112(11): 2512-2527. doi: 10.1061/(ASCE)0733-9445(1986)112:11(2512)
    [4] WANG Hao, TAO Tian-you, ZHOU Rui, et al. Parameter sensitivity study on flutter stability of a long-span tripletower suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128: 12-21. doi: 10.1016/j.jweia.2014.03.004
    [5] 万田保, 王忠彬. 泰州长江公路大桥三塔两跨悬索桥总体稳定性分析[J]. 桥梁建设, 2008(2): 17-19, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200802006.htm

    WAN Tian-bao, WANG Zhong-bin. Analysis of global stability of three-tower and two-span suspension bridge of Taizhou Changjiang River Highway Bridge[J]. Bridge Construction, 2008(2): 17-19, 26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200802006.htm
    [6] 张文明, 葛耀君. 三塔双主跨悬索桥动力特性精细化分析[J]. 中国公路学报, 2014, 27(2): 70-76. doi: 10.3969/j.issn.1001-7372.2014.02.009

    ZHANG Wen-ming, GE Yao-jun. Refinement analysis of dynamic characteristics of suspension bridge with triple towers and double main spans[J]. China Journal of Highway and Transport, 2014, 27(2): 70-76. (in Chinese). doi: 10.3969/j.issn.1001-7372.2014.02.009
    [7] 梁鹏, 吴向男, 李万恒, 等. 三塔悬索桥静动力特性与中塔选型[J]. 交通运输工程学报, 2011, 11(4): 29-35. http://transport.chd.edu.cn/article/id/201104005

    LIANG Peng, WU Xiang-nan, LI Wan-heng, et al. Static and dynamic properties of three-tower suspension bridge and structural type selection of mid-tower[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 29-35. (in Chinese). http://transport.chd.edu.cn/article/id/201104005
    [8] 李加武, 王新, 张悦, 等. 桥梁风致振动的混沌特性[J]. 交通运输工程学报, 2014, 14(3): 34-42. doi: 10.3969/j.issn.1671-1637.2014.03.009

    LI Jia-wu, WANG Xin, ZHANG Yue, et al. Chaos characteristics of wind-induced vibrations for bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 34-42. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.03.009
    [9] LIU M F, CHANG T P, ZENG D Y. The interactive vibration behavior in a suspension bridge system under moving vehicle loads and vertical seismic excitations[J]. Applied Mathematical Modelling, 2011, 35(1): 398-411. doi: 10.1016/j.apm.2010.07.005
    [10] XU Y L, XIA H, YAN Q S. Dynamic response of suspension bridge to high wind and running train[J]. Journal of Bridge Engineering, 2003, 8(1): 46-55. doi: 10.1061/(ASCE)1084-0702(2003)8:1(46)
    [11] CHEN Z W, XU Y L, LI Q, et al. Dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings[J]. Journal of Bridge Engineering, 2011, 16(3): 383-391. doi: 10.1061/(ASCE)BE.1943-5592.0000216
    [12] DIANA G, FIAMMENGHI G. The Messina Strait Bridge: major problems affecting the design[C]∥STEFFEN A. 34th International Symposium on Bridge and Structural Engineering: Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas. Zurich: International Association for Bridge and Structural Engineering, 2010: 1-24.
    [13] ANDERSEN P K, ANDERSEN J E, BORDONARA G, et al. Runability analysis for the planned Messina Strait Bridge[C]∥ROECK G D, DEGRANDE G, LOMBAERT G, et al. Proceedings of the 8th International Conference on Structural Dynamics. München: European Association of Structural Dynamics, 2011: 1503-1509.
    [14] KWON S D, LEE J S, MOON J W, et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind[J]. Engineering Structures, 2008, 30(12): 3445-3456. doi: 10.1016/j.engstruct.2008.05.003
    [15] 刘清江. 公轨两用悬索桥风-车-桥耦合振动研究[J]. 武汉理工大学学报, 2014, 36(3): 107-113.

    LIU Qing-jiang. Coupled vibration research of wind-vehiclebridge of light rail-cum-road suspension bridges[J]. Journal of Wuhan University of Technology, 2014, 36(3): 107-113. (in Chinese).
    [16] 李永乐, 董世赋, 臧瑜, 等. 大跨度公轨两用悬索桥风-车-桥耦合振动及抗风行车准则研究[J]. 工程力学, 2012, 29(12): 114-120.

    LI Yong-le, DONG Shi-fu, ZANG Yu, et al. Coupling vibration of wind-vehicle-bridge system for long-span road-rail suspension bridge and resistant-wind criterion of running train[J]. Engineering Mechanics, 2012, 29(12): 114-120. (in Chinese).
    [17] LI Yong-le, XIANG Huo-yue, WANG Bin, et al. Dynamic analysis of wind-vehicle-bridge coupling system during the meeting of two trains[J]. Advances in Structural Engineering, 2013, 16(10): 1663-1670. doi: 10.1260/1369-4332.16.10.1663
    [18] 张敏, 张楠, 夏禾. 大跨度铁路悬索桥风-车-桥耦合动力分析[J]. 中国铁道科学, 2013, 34(4): 14-21.

    ZHANG Min, ZHANG Nan, XIA He. Analysis on windvehicle-bridge dynamic interaction for long-span railway suspension bridge[J]. China Railway Science, 2013, 34(4): 14-21. (in Chinese).
    [19] LI Yong-le, QIANG Shi-zhong, LIAO Hai-li, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(6): 483-507. doi: 10.1016/j.jweia.2005.04.001
    [20] 孟莎, 高芒芒. 武汉天兴洲公铁两用长江大桥动力计算分析[J]. 桥梁建设, 2008(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200801000.htm

    MENG Sha, GAO Mang-mang. Analysis of dynamic force calculation of Wuhan Tianxingzhou Changjiang Rail-Cum-Road Bridge[J]. Bridge Construction, 2008(1): 1-3. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200801000.htm
    [21] 李永乐, 朱佳琪, 赵凯, 等. 上海长江大桥风-轨道车辆-桥耦合振动及抗风行车准则研究[J]. 土木工程学报, 2012, 45(9): 108-114.

    LI Yong-le, ZHU Jia-qi, ZHAO Kai, et al. Coupled vibration of wind-rail vehicle-bridge system for Shanghai Yangtze River Bridge and the wind-resistant criterion of running trains[J]. China Civil Engineering Journal, 2012, 45(9): 108-114. (in Chinese).
    [22] 李永乐, 廖海黎, 强士中. 车桥系统气动特性的节段模型风洞试验研究[J]. 铁道学报, 2004, 26(3): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200403014.htm

    LI Yong-le, LIAO Hai-li, QIANG Shi-zhong. Study on aerodynamic characteristics of the vehicle-bridge system by the section model wind tunnel test[J]. Journal of the China Railway Society, 2004, 26(3): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200403014.htm
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  120
  • PDF下载量:  594
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 刊出日期:  2015-06-25

目录

    /

    返回文章
    返回