留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载波动激扰的机车牵引齿轮振动特性

王燕 刘建新

王燕, 刘建新. 负载波动激扰的机车牵引齿轮振动特性[J]. 交通运输工程学报, 2015, 15(6): 45-50. doi: 10.19818/j.cnki.1671-1637.2015.06.006
引用本文: 王燕, 刘建新. 负载波动激扰的机车牵引齿轮振动特性[J]. 交通运输工程学报, 2015, 15(6): 45-50. doi: 10.19818/j.cnki.1671-1637.2015.06.006
WANG Yan, LIU Jian-xin. Vibration properties of locomotive traction gear excited by load fluctuation[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 45-50. doi: 10.19818/j.cnki.1671-1637.2015.06.006
Citation: WANG Yan, LIU Jian-xin. Vibration properties of locomotive traction gear excited by load fluctuation[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 45-50. doi: 10.19818/j.cnki.1671-1637.2015.06.006

负载波动激扰的机车牵引齿轮振动特性

doi: 10.19818/j.cnki.1671-1637.2015.06.006
基金项目: 

国家自然科学基金项目 51375403

中央高校基本科研业务费专项资金项目 2682015ZD12

详细信息
    作者简介:

    王燕(1989-), 女, 四川内江人, 西南交通大学工学博士研究生, 从事机车车辆动力学研究

    刘建新(1965-), 男, 新疆伊犁人, 西南交通大学教授, 工学博士

  • 中图分类号: U260.111

Vibration properties of locomotive traction gear excited by load fluctuation

More Information
  • 摘要: 针对负载波动激扰的机车牵引齿轮振动问题, 建立了机车牵引齿轮的动力学方程, 利用平均法得到了齿轮振动频率与振幅, 分析了振幅变化趋势与参数变化对齿轮振动稳定后振幅的影响规律, 并进行了仿真试验。分析结果表明: 负载力矩是振动速度的函数; 振动频率为一个定值, 当蠕滑速度分别为0.8、0.2m·s-1时, 齿轮的振动频率均为335.0 Hz, 非常接近理论值334.8 Hz; 根据不同的情况, 振幅逐渐减小至0或逐渐增大至一个稳定的值; 当蠕滑速度为0.8m·s-1时, 齿轮振动稳定后的振幅随着齿轮啮合刚度和啮合阻尼的增大而减小, 随着小齿轮上的等效转动惯量和机车轴重的增大而增大, 因此, 增大齿轮啮合刚度和啮合阻尼、减小小齿轮上的等效转动惯量和机车轴重有助于降低齿轮的振幅。

     

  • 图  1  驱动装置

    Figure  1.  Driving device

    图  2  简化模型

    Figure  2.  Simplified model

    图  3  黏着系数曲线

    Figure  3.  Adhesion coefficient curve

    图  4  不同蠕滑速度下振动位移的时域响应

    Figure  4.  Time-domain responses of vibrational displacements under different creep speeds

    图  5  不同蠕滑速度下振动位移的频谱

    Figure  5.  Frequency spectrums of vibrational displacements under different creep speeds

    图  6  参数对振幅的影响

    Figure  6.  Influences of parameters on amplitude

  • [1] 李以农, 张锋, 丁庆中, 等. 齿轮啮合振动的主动控制方法与实验研究[J]. 振动工程学报, 2014, 27(2): 215-221. doi: 10.3969/j.issn.1004-4523.2014.02.009

    LI Yi-nong, ZHANG Feng, DING Qing-zhong, et al. Method and experiment study for active vibration control of gear meshing[J]. Journal of Vibration Engineering, 2014, 27(2): 215-221. (in Chinese). doi: 10.3969/j.issn.1004-4523.2014.02.009
    [2] 张霖霖, 朱如鹏, 靳广虎, 等. 内激励作用下的单对齿轮振动噪声分析[J]. 振动工程学报, 2014, 27(6): 915-919. doi: 10.3969/j.issn.1004-4523.2014.06.016

    ZHANG Lin-lin, ZHU Ru-peng, JIN Guang-hu, et al. Vibration and noise analysis of internal excitations of single pair of gears[J]. Journal of Vibration Engineering, 2014, 27(6): 915-919. (in Chinese). doi: 10.3969/j.issn.1004-4523.2014.06.016
    [3] KAHRAMAN A, SINGH R. Interactions between timevarying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration, 1991, 146(1): 135-156. doi: 10.1016/0022-460X(91)90527-Q
    [4] FARSHIDIANFAR A, SAGHAFI A. Bifurcation and chaos prediction in nonlinear gear systems[J]. Shock and Vibration, 2014, 2104: 1-8.
    [5] HE S, GUNDA R, SINGH R. Inclusion of sliding friction in contact dynamics model for helical gears[J]. Journal of Mechanical Design, 2007, 129(1): 48-57. doi: 10.1115/1.2359474
    [6] HE S, CHO S, SINGH R. Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations[J]. Journal of Sound and Vibration, 2008, 309(3-5): 843-851. doi: 10.1016/j.jsv.2007.06.077
    [7] KAHRAMAN A, BLANKENSHIP G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64(1): 217-226. doi: 10.1115/1.2787276
    [8] AL-SHYYAB A, KAHRAMAN A. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: sub-harmonic motions[J]. Journal of Sound and Vibration, 2005, 279(1): 417-451.
    [9] 黄冠华, 张卫华, 宋纾崎, 等. 高速列车齿轮传动系统谐振分析[J]. 交通运输工程学报, 2014, 14(6): 51-58. doi: 10.3969/j.issn.1671-1637.2014.06.007

    HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, et al. Harmonic resonance analysis of gear transmission system for high speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 51-58. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.06.007
    [10] PADMANABHAN C, SINGH R. Analysis of periodically forced nonlinear Hill's oscillator with application to a geared system[J]. The Journal of the Acoustical Society of America, 1996, 99(1): 324-334. doi: 10.1121/1.414544
    [11] THEODOSSIADES S, NATSIAVAS S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash[J]. Journal of Sound and Vibration, 2000, 229(2): 287-310. doi: 10.1006/jsvi.1999.2490
    [12] 王建平, 王玉新. 齿轮系统谐波共振频率因子与主共振响应研究[J]. 西安理工大学学报, 2005, 21(2): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-XALD200502005.htm

    WANG Jian-ping, WANG Yu-xin. Harmonic resonance frequency factor of a spur geared system and primary resonance research[J]. Journal of Xi'an University of Technology, 2005, 21(2): 134-138. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XALD200502005.htm
    [13] 王建平, 王玉新. 考虑动态刚度、传递误差及齿侧间隙的齿轮系统谐振分析[J]. 机械设计, 2005, 22(9): 26-28, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200509009.htm

    WANG Jian-ping, WANG Yu-xin. Resonance analysis of gear system with the consideration of dynamic rigidity, transmission error and tooth backlash[J]. Journal of Machine Design, 2005, 22(9): 26-28, 32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200509009.htm
    [14] 刘文, 林腾蛟, 李润方, 等. 冲击谱激励下齿轮系统的动力学性能[J]. 重庆大学学报, 2010, 33(1): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201001003.htm

    LIU Wen, LIN Teng-jiao, LI Run-fang, et al. Dynamics performance analysis on gear system under shock spectrum[J]. Journal of Chongqing University, 2010, 33(1): 7-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201001003.htm
    [15] 魏静, 孙伟, 褚衍顺, 等. 斜齿轮系统分岔与混沌特性及其参数影响研究[J]. 哈尔滨工程大学学报, 2013, 34(10): 1301-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201310016.htm

    WEI Jing, SUN Wei, CHU Yan-shun, et al. Bifurcation and chaotic characteristics of helical gear system and parameter influences[J]. Journal of Harbin Engineering University, 2013, 34(10): 1301-1309. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201310016.htm
    [16] HIROTSU T, KASAI S, TAKAI H. Self-excited vibration during slippage of parallel Cardan drives for electric railcars[J]. JSME International Journal, 1987, 30: 1304-1310. doi: 10.1299/jsme1987.30.1304
    [17] 陈哲明, 曾京, 罗仁, 等. 轮对纵向蠕滑率对动车传动系统振动的影响[J]. 计算机工程与应用, 2011, 47(14): 214-216. doi: 10.3778/j.issn.1002-8331.2011.14.062

    CHEN Zhe-ming, ZENG Jing, LUO Ren, et al. Effect of wheelset longitudinal slip on transmission vibration of motor car[J]. Computer Engineering and Applications, 2011, 47(14): 214-216. (in Chinese). doi: 10.3778/j.issn.1002-8331.2011.14.062
    [18] ISHIKAWA Y, KAWAMURA A. Maximum adhesive force control in super high speed train[C]∥IEEE. Proceedings of the 1997Power Conversion Conference—Nagaoka 1997. New York: IEEE, 1997: 951-954.
    [19] TAKAOKA Y, KAWAMURA A. Disturbance observer based adhesion control for Shinkansen[C]∥IEEE. 6th International Workshop on Advanced Motion Control. New York: IEEE, 2000: 169-174.
    [20] 孙丽霞, 姚建伟, 侯福国. 轮轨干摩擦下的轮对横向自激振动机理[J]. 中国铁道科学, 2012, 33(5): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201205012.htm

    SUN Li-xia, YAO Jian-wei, HOU Fu-guo. Lateral self-excited vibration mechanism of wheelset subjected to wheel/rail dry friction contact system[J]. China Railway Science, 2012, 33(5): 60-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201205012.htm
  • 加载中
图(6)
计量
  • 文章访问数:  506
  • HTML全文浏览量:  101
  • PDF下载量:  660
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-20
  • 刊出日期:  2015-06-25

目录

    /

    返回文章
    返回