留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车转向架舱内流场实车测试与数值模拟

韩运动 姚松 陈大伟 梁习锋

韩运动, 姚松, 陈大伟, 梁习锋. 高速列车转向架舱内流场实车测试与数值模拟[J]. 交通运输工程学报, 2015, 15(6): 51-60. doi: 10.19818/j.cnki.1671-1637.2015.06.007
引用本文: 韩运动, 姚松, 陈大伟, 梁习锋. 高速列车转向架舱内流场实车测试与数值模拟[J]. 交通运输工程学报, 2015, 15(6): 51-60. doi: 10.19818/j.cnki.1671-1637.2015.06.007
HAN Yun-dong, YAO Song, CHEN Da-wei, LIANG Xi-feng. Real vehicle test and numerical simulation of flow field in high-speed train bogie cabin[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 51-60. doi: 10.19818/j.cnki.1671-1637.2015.06.007
Citation: HAN Yun-dong, YAO Song, CHEN Da-wei, LIANG Xi-feng. Real vehicle test and numerical simulation of flow field in high-speed train bogie cabin[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 51-60. doi: 10.19818/j.cnki.1671-1637.2015.06.007

高速列车转向架舱内流场实车测试与数值模拟

doi: 10.19818/j.cnki.1671-1637.2015.06.007
基金项目: 

国家自然科学基金项目 51405517

国家自然科学基金项目 U1134250

详细信息
    作者简介:

    韩运动(1983-), 男, 山东临沂人, 中车青岛四方机车车辆股份有限公司工程师, 中南大学工学博士研究生, 从事列车空气动力学研究

    姚松(1975-), 男, 湖北公安人, 中南大学副教授, 工学博士

  • 中图分类号: U270.14

Real vehicle test and numerical simulation of flow field in high-speed train bogie cabin

More Information
    Author Bio:

    HAN Yun-dong(1983-), male, engineer, doctoral student, +86-731-82655294, hanley1984@126.com

    YAO Song(1975-), male, associate professor, PhD, +86-731-82655294, song_yao@csu.edu.cn

  • 摘要: 设计了一种高速列车转向架舱内流场状态测试装置。在无横风、横风速度为15m·s-1与端板角度分别为30°、45°、70°条件下对转向架舱内流场进行了数值模拟, 并分析了裙板包覆对转向架舱内积雪形成的影响。试验结果表明: 转向架舱内气流流动规律的实测结果与模拟结果相同, 说明数值模拟可行; 动气流由列车底部以及两侧裙板灌入转向架舱内, 流经端板时产生流动分离现象, 大部分气流由端板底部及两侧裙板后部排出; 自头车往后, 流经转向架舱内的气流速度逐渐减小, 裙板处进气区域减小, 裙板后部排气区域增大; 雪粒大多由流经转向架舱底部的气流带入, 然后在转向架流场影响下不断沉积而产生积雪; 合理设置转向架舱端板角度可以减小冰雪在转向架舱内堆积的概率; 包覆裙板并不能有效减少转向架舱内积雪, 不建议采用。

     

  • 图  1  转向架舱

    Figure  1.  Bogie cabin

    图  2  监测装置

    Figure  2.  Monitoring equipment

    图  3  列车转向架

    Figure  3.  Train bogies

    图  4  气流流向对比

    Figure  4.  Comparison of airflow directions

    图  5  不同速度下气流流向分布

    Figure  5.  Air flow direction distributions at different speeds

    图  6  裙板处气流流向对比

    Figure  6.  Comparison of airflow directions at skirt plate

    图  7  列车上下行时气流流向分布

    Figure  7.  Airflow direction distributions at bogie when train is upgoingor downgoing

    图  8  外场区域

    Figure  8.  Outfield area

    图  9  计算模型

    Figure  9.  Calculation model

    图  10  网格划分

    Figure  10.  Mesh partition

    图  11  旋转结构

    Figure  11.  Rotational structure

    图  12  转向架编号

    Figure  12.  Bogie numbers

    图  13  头车表面压力云和纵剖面速度

    Figure  13.  Surface pressure cloud and vertical section speed of head car

    图  14  6个转向架的三维流线

    Figure  14.  Three dimensional streamlines of 6bogies

    图  15  纵剖面速度分布

    Figure  15.  Speed distributions of vertical sections

    图  16  截面流速

    Figure  16.  Flow velocities of sections

    图  17  转向架区域三维流线

    Figure  17.  Three dimensional streamlines of bogie area

    图  18  动车转向架纵剖面流速

    Figure  18.  Vertical section flow speeds of motor car bogie

    图  19  拖车转向架纵剖面速度

    Figure  19.  Vertical section flow speeds of trailer bogie

    图  20  转向架裙板包覆前后对比

    Figure  20.  Comparison of bogies before and after covering skirt plate

    图  21  裙板包覆后截面流速

    Figure  21.  Section flow speeds after covering skirt plate

    表  1  计算结果

    Table  1.   Calculation result

  • [1] 周晅毅, 顾明, 朱忠义, 等. 首都国际机场3号航站楼屋面雪载荷分布研究[J]. 同济大学学报: 自然科学版, 2007, 35(9): 1193-1196. doi: 10.3321/j.issn:0253-374X.2007.09.008

    ZHOU Xuan-yi, GU Ming, ZHU Zhong-yi, et al. Study on snow loads on roof of Terminal 3of Beijing Capital International Airport[J]. Journal of Tongji University: Natural Science, 2007, 35(9): 1193-1196. (in Chinese). doi: 10.3321/j.issn:0253-374X.2007.09.008
    [2] 李雪峰, 周晅毅, 顾明. 北京南站屋面雪载荷分布研究[J]. 建筑结构, 2008, 38(5): 109-112.

    LI Xue-feng, ZHOU Xuan-yi, GU Ming. Study on snow loads on the roof of Beijing South Station[J]. Building Structure, 2008, 38(5): 109-112. (in Chinese).
    [3] 李俊民, 单永林, 林鹏. 高速动车组转向架防冰雪导流罩的空气动力学性能分析[J]. 计算机辅助工程, 2013, 22(2): 20-26, 80. doi: 10.3969/j.issn.1006-0871.2013.02.005

    LI Jun-min, SHAN Yong-lin, LIN Peng. Analysis on aerodynamic performance of anti-ice/snow dome of high speed motor train unit bogie[J]. Computer Aided Engineering, 2013, 22(2): 20-26, 80. (in Chinese). doi: 10.3969/j.issn.1006-0871.2013.02.005
    [4] SHISHIDO M, NAKADE K, IDO A, et al. Development of deflector to decrease snow-accretion to truck of a vehicle[J]. Rtri Report, 2009, 23(3): 29-34.
    [5] 张骥. 日本铁路防冰雪灾害举措[J]. 中国铁路, 2009(1): 64-68. doi: 10.3969/j.issn.1001-683X.2009.01.015

    ZHANG Ji. Measures of preventing ice and snow for Japanese railways[J]. Chinese Railways, 2009(1): 64-68. (in Chinese). doi: 10.3969/j.issn.1001-683X.2009.01.015
    [6] 程永陆. Euro 4000型机车防寒改造[J]. 国外内燃机车, 2011(2): 1, 6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201102002.htm

    CHENG Yong-lu. Cold proof remake for Euro 4000locomotive[J]. Foreign Diesel Locomotive, 2011(2): 1, 6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201102002.htm
    [7] KLOOW L. High-speed train operation in winter climate[R]. Stockholm: KTH Railway Group, 2011.
    [8] ANDERSSON E. Concept proposal for a Scandinavian highspeed train[R]. Stockholm: KTH Railway Group, 2012.
    [9] POURREZA S. TBA 4530specialization project[R]. Trondheim: Norwegian University of Science and Technology, 2010.
    [10] PARADOT N, ALLAIN E, CROUÉR, et al. Development of a numerical modelling of snow accumulation on a high speed train[C]∥POMBO J. Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance. Stirling: Civil-Comp Press, 2014: 1-17.
    [11] UIC. Winter and railways study: rail system forum sector rolling stock sector infrastructure[R]. Paris: UIC, 2010.
    [12] 姚远. 高速列车典型区域非定常气动特性研究[D]. 北京: 中国科学院大学, 2013.

    YAO Yuan. Study on unsteady aerodynamic characteristics of typical flow regions around high-speed trains[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese).
    [13] JÖNSSON M. Numerical investigation of the flow underneath a train and the effect of design changes[D]. Luleả: LuleảUniversity of Technology, 2007.
    [14] MULD T W. Analysis of flow structures in wake flows for train aerodynamics[R]. Stockholm: Royal Institute of Technology, 2010.
    [15] 姚拴宝, 郭迪龙, 孙振旭, 等. 基于Kriging代理模型的高速列车头型多目标优化设计. 中国科学: 技术科学, 2013, 43(2): 186-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201302008.htm

    YAO Shuan-bao, GUO Di-long, SUN Zhen-xu, et al. Multiobjective optimization of the streamlined head of high-speed trains based on the Kriging model[J]. Scientia Sinica Technologica, 2013, 43(2): 186-200.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201302008.htm
    [16] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7): 277-298.
    [17] KRAJNOVI C'S. Optimization of aerodynamic properties of high-speed trains with CFD and response surface models[J]. Lecture Notes in Applied and Computational Mechanics, 2009, 41: 197-211.
    [18] HEMIDA H, KRAJNOVI C'S. Numerical study of the unsteady flow structure around train-shaped body subjected to side winds[C]∥WESSELING P, OÑATE E, PÉRIAUX J. European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006. Delft: Delft University of Technology, 2006: 1-14.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  126
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-20
  • 刊出日期:  2015-06-25

目录

    /

    返回文章
    返回