留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进GH-SOM的可接受航班编队调度优化

孟令航 徐肖豪

孟令航, 徐肖豪. 基于改进GH-SOM的可接受航班编队调度优化[J]. 交通运输工程学报, 2015, 15(6): 75-82. doi: 10.19818/j.cnki.1671-1637.2015.06.010
引用本文: 孟令航, 徐肖豪. 基于改进GH-SOM的可接受航班编队调度优化[J]. 交通运输工程学报, 2015, 15(6): 75-82. doi: 10.19818/j.cnki.1671-1637.2015.06.010
MENG Ling-hang, XU Xiao-hao. Scheduling optimization of acceptable flight formation based on improved GH-SOM[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 75-82. doi: 10.19818/j.cnki.1671-1637.2015.06.010
Citation: MENG Ling-hang, XU Xiao-hao. Scheduling optimization of acceptable flight formation based on improved GH-SOM[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 75-82. doi: 10.19818/j.cnki.1671-1637.2015.06.010

基于改进GH-SOM的可接受航班编队调度优化

doi: 10.19818/j.cnki.1671-1637.2015.06.010
基金项目: 

国家自然科学基金项目 61571441

国家自然科学基金项目 U1433111

详细信息
    作者简介:

    孟令航(1977-), 男, 河南桐柏人, 天津大学工学博士研究生, 从事空中交通运输规划与管理研究

    徐肖豪(1949-), 男, 浙江金华人, 天津大学博士生导师, 中国民航大学教授, 工学博士

  • 中图分类号: V355.2

Scheduling optimization of acceptable flight formation based on improved GH-SOM

More Information
  • 摘要: 针对可接受航班编队调度优化问题, 从最大当量航程约束和最大允许延误约束出发, 推导出可接受编队模式的统计判别边界, 将编队调度优化问题转化为最优层次聚类问题, 利用改进的层次生长型自组织映射(GH-SOM)神经网络实现对可接受编队调度聚类的递归求精。仿真结果表明: 与经验判别边界相比, 基于可接受编队统计判别边界的识别量提高了92.14%, 平均扁率和平均时间同步偏差分别降低了25.00%和26.23%, 扁率标准差和时间同步偏差标准差分别降低了12.50%和18.75%;与自组织映射、标准GH-SOM相比, 基于改进GH-SOM的识别量分别提高了303.49%、162.87%, 平均扁率分别降低了34.25%、22.58%, 平均时间同步偏差分别降低了47.06%、36.62%, 扁率标准差分别降低了45.10%、6.67%, 时间同步偏差分别降低了46.94%、3.70%, 因此, 可接受编队模式的统计判别边界与改进GH-SOM是有效性的。

     

  • 图  1  飞行航程

    Figure  1.  Flight range

    图  2  空间维边界

    Figure  2.  Spatial boundary

    图  3  改进GH-SOM模型

    Figure  3.  Improved GH-SOM model

    图  4  算法描述

    Figure  4.  Algorithm description

    图  5  扁率与时间同步偏差

    Figure  5.  Flat rates and time synchronization deviations

    图  6  识别过程中的扁率

    Figure  6.  Flat rates in recognition process

    图  7  识别过程中的时间同步偏差

    Figure  7.  Time synchronization deviations in recognition process

    图  8  识别结果

    Figure  8.  Recognition result

    图  9  结果对比

    Figure  9.  Results comparison

    表  1  基于特征向量的识别结果对比

    Table  1.   Comparison of recognition results based on feature vectors

    表  2  识别结果对比

    Table  2.   Comparison of recognition results

  • [1] DKM A. Global traffic forecast 2006-2025[R]. Montreal: Airports Council International, 2007.
    [2] ROJO J J. Future trends in local air quality impacts of aviation[D]. Cambridge: Massachusetts Institute of Technology, 2007.
    [3] DIJKERS H P A, VAN NUNEN R, BOS D A, et al. Integrated design of a long-haul commercial aircraft optimized for formation flying[C]∥AIAA. 11th AIAA Aviation Technology, Integration, and Operations(ATIO)Conference. Reston: AIAA, 2011: 1-8.
    [4] NING S A, FLANZER T C, KROO I M. Aerodynamic performance of extended formation flight[J]. Journal of Aircraft, 2011, 48(3): 855-865. doi: 10.2514/1.C031046
    [5] NING S A. Aircraft drag reduction through extended formation flight[D]. Stanford: Stanford University, 2011.
    [6] NING S A, KROO I. Compressibility effects of extended formation flight[C]∥AIAA. 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011: 1-24.
    [7] FLANZER T C, BIENIAWSKI S R, BLAKE W B. Operational analysis for the formation flight for aerodynamic benefit program[C]∥AIAA. 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014: 1-19.
    [8] XUE M, HORNBY G S. An analysis of the potential savings from using formation flight in the NAS[C]∥AIAA. AIAA Guidance, Navigation, and Control Conference 2012. Reston: AIAA, 2012: 1-12.
    [9] RIBICHINI G, FRAZZOLI E. Efficient coordination of multipleaircraft systems[C]∥IEEE. Proceedings of the 42nd IEEE Conference on Decision and Control. New York: IEEE, 2003: 1035-1040.
    [10] BOWER G C, FLANZER T C, KROO I M. Formation geometries and route optimization for commercial formation flight[C]∥AIAA. 27th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2009: 1-18.
    [11] KENT T E, RICHARDS A G. A geometric approach to optimal routing for commercial formation flight[C]∥AIAA. AIAA Guidance, Navigation, and Control Conference 2012. Reston: AIAA, 2012: 13-29.
    [12] KENT T E, RICHARDS A G. On optimal routing for commercial formation flight[C]∥AIAA. AIAA Guidance, Navigation, and Control Conference 2013. Reston: AIAA, 2013: 1-11.
    [13] HINO T. Real time path planning method of aircraft formations[C]∥ICAS. 28th Congress of the International Council of the Aeronautical Sciences 2012. Stockholm: ICAS, 2012: 3391-3399.
    [14] XU J, NING S A, BOWER G, et al. Aircraft route optimization for formation flight[J]. Journal of Aircraft, 2014, 51(2): 490-501. doi: 10.2514/1.C032154
    [15] DREZNER Z, WESOLOWSKY G O. Facility location on a sphere[J]. The Journal of the Operational Research Society, 1978, 29(10): 997-1004. doi: 10.1057/jors.1978.213
    [16] 毛海军, 张永, 李旭宏. 物流企业分类模型[J]. 交通运输工程学报, 2005, 5(2): 117-121. http://transport.chd.edu.cn/article/id/200502028

    MAO Hai-jun, ZHANG Yong, LI Xu-hong. Logistics enterprise classifying model[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 117-121. (in Chinese). http://transport.chd.edu.cn/article/id/200502028
    [17] KOHONEN T, KASKI S, LAGUS K, et al. Self organization of a massive document collection[J]. IEEE Transactions on Neural Networks, 2000, 11(3): 574-585. doi: 10.1109/72.846729
    [18] FRITZKE B. Growing grid—a self-organizing network with constant neighborhood range and adaptation strength[J]. Neural Processing Letters, 1995, 2(5): 9-13. doi: 10.1007/BF02332159
    [19] FRITZKE B. Growing cell structures—a self-organizing network for unsupervised and supervised learning[J]. Neural Networks, 1994, 7(9): 1441-1460. doi: 10.1016/0893-6080(94)90091-4
    [20] MIIKKULAINEN R. Script recognition with hierarchical feature maps[J]. Connection Science, 1990, 2(1/2): 83-101.
    [21] DITTENBACH M, MERKL D, RAUBER A. The growing hierarchical self-organizing map[C]∥IEEE. Proceedings of the International Joint Conference on Neural Networks. New York: IEEE, 2000: 15-19.
    [22] DITTENBACH M, RAUBER A, MERKL D. Uncovering hierarchical structure in data using the growing hierarchical self-organizing map[J]. Neurocomputing, 2002, 48(1-4): 199-216. doi: 10.1016/S0925-2312(01)00655-5
    [23] BLAKE W, MULTHOPP D. Design, performance and modeling considerations for close formation flight[C]∥AIAA. 23rd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1998: 476-486.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  58
  • PDF下载量:  564
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-30
  • 刊出日期:  2015-06-25

目录

    /

    返回文章
    返回