留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过饱和交叉口交通信号控制动态规划优化模型

李瑞敏 唐瑾

李瑞敏, 唐瑾. 过饱和交叉口交通信号控制动态规划优化模型[J]. 交通运输工程学报, 2015, 15(6): 101-109. doi: 10.19818/j.cnki.1671-1637.2015.06.013
引用本文: 李瑞敏, 唐瑾. 过饱和交叉口交通信号控制动态规划优化模型[J]. 交通运输工程学报, 2015, 15(6): 101-109. doi: 10.19818/j.cnki.1671-1637.2015.06.013
LI Rui-min, TANG Jin. Traffic signal control optimization model of over-saturated intersection based on dynamic programming[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 101-109. doi: 10.19818/j.cnki.1671-1637.2015.06.013
Citation: LI Rui-min, TANG Jin. Traffic signal control optimization model of over-saturated intersection based on dynamic programming[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 101-109. doi: 10.19818/j.cnki.1671-1637.2015.06.013

过饱和交叉口交通信号控制动态规划优化模型

doi: 10.19818/j.cnki.1671-1637.2015.06.013
基金项目: 

国家自然科学基金项目 71361130015

“十一五”国家科技支撑计划项目 2014BAG03B03

详细信息
    作者简介:

    李瑞敏(1979-), 男, 山东莱州人, 清华大学副教授, 工学博士, 从事智能交通系统研究

  • 中图分类号: U491.51

Traffic signal control optimization model of over-saturated intersection based on dynamic programming

More Information
  • 摘要: 为满足过饱和交叉口信号控制的需求, 应用动态规划理论, 建立了过饱和交叉口信号控制优化模型, 界定了模型的阶段、状态变量和决策变量, 推导了平均排队长度状态转移方程和控制器状态转移方程, 确定了基于交叉口不同饱和状态的目标函数与约束条件, 提出了模型优化框架。非饱和状态以最小化延误为控制目标, 饱和状态和过饱和状态以最大化通行能力为控制目标。通过迭代运算判断保持或者切换当前相位, 并将控制效果实时反馈以调节下一阶段信号配时方案。以秦皇岛市某交叉口为例, 基于实际采集数据得到了非饱和、饱和与过饱和3种状态的交通流量, 应用动态规划模型获得配时方案, 并与TRANSYT方法给出的配时方案进行了对比分析。分析结果表明: 在非饱和状态下, 采用动态规划模型计算的平均延误、饱和度、平均排队长度分别为49.3s、0.76、13.7veh, 采用TRANSYT方法计算的对应值分别为52.0s、0.78、14.4veh; 在过饱和状态下, 采用动态规划模型计算的饱和度与平均延误分别为0.85、78.5s, 采用TRANSYT方法计算的对应值分别为0.86、82.5s, 但对应的平均排队长度为27.3veh, 略优于动态规划模型的27.6veh; 饱和状态控制效果与过饱和状态控制效果类似。可见, 采用动态规划模型可以有效降低交叉口饱和度, 减少各相位不同进口道车辆的平均延误。

     

  • 图  1  固定相序

    Figure  1.  Fixed phase sequence

    图  2  优化流程

    Figure  2.  Optimization flow

    图  3  交叉口车道组

    Figure  3.  Lane groups of intersection

    图  4  交叉口相位

    Figure  4.  Intersection phases

    图  5  非饱和状态的有效绿灯时间

    Figure  5.  Effective green times of unsaturated state

    图  6  过饱和状态的有效绿灯时间

    Figure  6.  Effective green times of over-saturated state

    图  7  饱和状态的有效绿灯时间

    Figure  7.  Effective green times of saturated state

    图  8  非饱和状态的信号配时方案比较

    Figure  8.  Comparison of signal timing plans of unsaturated state

    图  9  过饱和状态的信号配时方案比较

    Figure  9.  Comparison of signal timing plans of over-saturated state

    图  10  饱和状态的信号配时方案比较

    Figure  10.  Comparison of signal timing plans of saturated state

    图  11  饱和度对比

    Figure  11.  Comparison of saturations

    图  12  平均延误对比

    Figure  12.  Comparison of average delays

    图  13  平均排队长度对比

    Figure  13.  Comparison of average queue lengths

    图  14  各相位平均饱和度对比

    Figure  14.  Comparison of average saturations of different phases

    图  15  延误方差对比

    Figure  15.  Comparison of delay variances

    图  16  平均排队长度方差对比

    Figure  16.  Comparison of variances of average queue lengths

    表  1  交通流量与饱和度

    Table  1.   Traffic flows and saturations

  • [1] CHEN Shuai-yu, XU Hao, LIU Hong-chao. Timing oversaturated signals: what can we learn from classic and state-of-the-art signal control models[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(1): 97-110. doi: 10.1016/S1570-6672(13)60093-8
    [2] 郑淑鉴. 过饱和下的干道协调控制方法研究[D]. 广州: 华南理工大学, 2012.

    ZHENG Shu-jian. Research on the method of coordinate control for oversaturated arterials[D]. Guangzhou: South China University of Technology, 2012. (in Chinese).
    [3] SONG Xian-min, TAO Peng-fei, CHEN Li-gang, et al. Offset optimization based on queue length constraint for saturated arterial intersections[J]. Discrete Dynamics in Nature and Society, 2012, 2012(23): 327-337.
    [4] 臧利林, 朱文兴. 基于子区域交通流优化的交叉口信号控制研究[J]. 中国公路学报, 2012, 25(6): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201206025.htm

    ZANG Li-lin, ZHU Wen-xing. Study on control algorithm of traffic signals at intersections based on optimizing sub-area traffic flows[J]. China Journal of Highway and Transport, 2012, 25(6): 136-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201206025.htm
    [5] TALMOR I, MAHALEL D. Signal design for an isolated intersection during congestion[J]. Journal of the Operational Research Society, 2007, 58(4): 454-466. doi: 10.1057/palgrave.jors.2602146
    [6] GAZIS D C. Optimum control of a system of oversaturated intersections[J]. Operations Research, 1964, 12(6): 815-831. doi: 10.1287/opre.12.6.815
    [7] MICHALOPOULOS P G, STEPHANOPOULOS G. Oversaturated signal systems with queue length constraints—Ⅰ: single intersection[J]. Transportation Research, 1977, 11(6): 413-421. doi: 10.1016/0041-1647(77)90006-5
    [8] MICHALOPOULOS P G, STEPHANOPOULOS G. Oversaturated signal systems with queue length constraints—Ⅱ: systems of intersections[J]. Transportation Research, 1977, 11(6): 423-428. doi: 10.1016/0041-1647(77)90007-7
    [9] ABU-LEBDEH G. Development of dynamic traffic signal control procedures for oversaturated arterials and genetic algorithms solutions[D]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 1999.
    [10] ABU-LEBDEH G, BENEKOHAL R F. Design and evaluation of dynamic traffic management strategies for congested conditions[J]. Transportation Research Part A: Policy and Practice, 2003, 37(2): 109-127. doi: 10.1016/S0965-8564(02)00006-X
    [11] AHN G H, MACHEMEHL R B. Methodology for traffic signal timing in oversaturated arterial networks[R]. Austin: University of Texas at Austin, 1997.
    [12] LIEBERMAN E B, CHANG J, PRASSAS E S. Formulation of real-time control policy for oversaturated arterials[J]. Transportation Research Record, 2000(1727): 77-88.
    [13] CHANG J. Real-time traffic control policy for oversaturated arterials[D]. New York: Polytechnic University, 2000.
    [14] HENRY J J, FARGES J L, TUFFAL J. The PRODYN real time traffic algorithm[C]∥Elsevier. The 4th IFAC/IFIP/IFORS Conference on Control in Transportation Systems. Amsterdam: Elsevier, 1984: 305-310.
    [15] MIRCHANDANI P, HEAD L. A real-time traffic signal control system: architecture, algorithms, and analysis[J]. Transportation Research Part C: Emerging Technologies, 2001, 9(6): 415-432. doi: 10.1016/S0968-090X(00)00047-4
    [16] CAI Chen. An approximate dynamic programming strategy for responsive traffic signal control[C]∥IEEE. Proceedings of 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning. New York: IEEE, 2007: 303-310.
    [17] CAI Chen, WONG C K, Heydecker B G. Adaptive traffic signal control using approximate dynamic programming[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(5): 456-474. doi: 10.1016/j.trc.2009.04.005
    [18] BIE Yi-ming, WANG Lin-hong, WANG Dian-hai, et al. A signal coordination algorithm for two adjacent intersections based on approximate dynamic programming[J]. Journal of Southeast University: English Edition, 2012, 28(1): 112-118.
    [19] 贾琰. 基于近似动态规划的交通控制算法的研究[D]. 北京: 北京交通大学, 2008.

    JIA Yan. Traffic control algorithm based on approximate dynamic programming[D]. Beijing: Beijing Jiaotong University, 2008. (in Chinese).
    [20] GARTNER N H. OPAC: a demand-responsive strategy for traffic signal control[J]. Transportation Research Record, 1983(906): 75-81.
    [21] BELLMAN R. Dynamic programming and Lagrange multipliers[J]. Proceedings of the National Academy of Sciences, 1956, 42(10): 767-769. doi: 10.1073/pnas.42.10.767
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  128
  • PDF下载量:  1061
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-27
  • 刊出日期:  2015-06-25

目录

    /

    返回文章
    返回