留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道短波不平顺数值模拟新方法

李再帏 雷晓燕 高亮

李再帏, 雷晓燕, 高亮. 轨道短波不平顺数值模拟新方法[J]. 交通运输工程学报, 2016, 16(1): 37-45. doi: 10.19818/j.cnki.1671-1637.2016.01.005
引用本文: 李再帏, 雷晓燕, 高亮. 轨道短波不平顺数值模拟新方法[J]. 交通运输工程学报, 2016, 16(1): 37-45. doi: 10.19818/j.cnki.1671-1637.2016.01.005
LI Zai-wei, LEI Xiao-yan, GAO Liang. New numerical simulation method of shortwave track irregularity[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 37-45. doi: 10.19818/j.cnki.1671-1637.2016.01.005
Citation: LI Zai-wei, LEI Xiao-yan, GAO Liang. New numerical simulation method of shortwave track irregularity[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 37-45. doi: 10.19818/j.cnki.1671-1637.2016.01.005

轨道短波不平顺数值模拟新方法

doi: 10.19818/j.cnki.1671-1637.2016.01.005
基金项目: 

国家自然科学基金项目 51478184

国家自然科学基金项目 51478258

详细信息
    作者简介:

    李再帏(1983-), 男, 吉林大安人, 上海工程技术大学副教授, 工学博士, 从事轨道动力学研究

  • 中图分类号: U216.3

New numerical simulation method of shortwave track irregularity

More Information
    Author Bio:

    LI Zai-wei (1983-), male, associate professor, PhD, +86-21-67791163, lzw_5220964@163.com

  • 摘要: 针对轨道短波不平顺问题, 提出了一种基于离散二进制小波的轨道短波不平顺数值模拟方法, 将ISO 3095标准谱作为目标函数, 得到了ISO 3095标准谱和小波系数的关系, 给出了数值模拟算法流程与步骤, 并将数值模拟结果与上海某段地铁实测结果进行了对比分析。分析结果表明: 合适的小波分解层数为8层, 最低层包含的波长范围为512~1 024 mm; 短波不平顺数值模拟时域波形符合实际轨道短波不平顺的统计特征, 呈现非平稳性, 幅值分布范围为-0.15~0.15 mm; 数值模拟结果与ISO 3095标准谱之间存在的差异由倍频程采样间隔与三分之一倍频程采样间隔的差异造成。可见, 采用二进制小波变换可以有效实现轨道短波不平顺的数值模拟, 模拟结果与实测结果在幅值和细部波形方面略有差别, 建议对轨道短波不平顺进行大量的测量与统计分析。

     

  • 图  1  ISO 3095标准谱

    Figure  1.  Standard spectrum of ISO 3095

    图  2  算法流程

    Figure  2.  Algorithm flow

    图  3  RMF型波磨测量仪

    Figure  3.  RMF rail corrugation device

    图  4  实测时域波形

    Figure  4.  Time domain waveform of field measurement

    图  5  消除低频趋势项后的时域波形

    Figure  5.  Time domain waveform after eliminating low frequency trend item

    图  6  小波分解结果

    Figure  6.  Wavelet decomposition result

    图  7  消除低频趋势项后的小波分解结果

    Figure  7.  Wavelet decomposition result after eliminating low frequency trend item

    图  8  谱线对比

    Figure  8.  Spectrum comparison

    图  9  数值模拟时域波形

    Figure  9.  Time domain waveform of numerical simulation

    图  10  数值模拟不平顺水平谱

    Figure  10.  Irregularity level spectrums of numerical simulation

    图  11  数值模拟小波分解结果

    Figure  11.  Wavelet decomposition result of numerical simulation

    表  1  频带对应关系

    Table  1.   Frequency band correspondence relationship

    下载: 导出CSV
  • [1] GRASSIE S L. Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling[J]. Journal of Rail and Rapid Transit, 2012, 226(5): 542-557. doi: 10.1177/0954409712443492
    [2] MOLODOVA M, LI Z L, DOLLEVOET R. Axle box acceleration: measurement and simulation for detection of short track defects[J]. Wear, 2011, 271(1/2): 349-356. https://www.sciencedirect.com/science/article/pii/S0043164810003376
    [3] 周宇. 城市轨道交通轨面短波不平顺水平谱分析[J]. 城市轨道交通研究, 2014, 17(4): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201404006.htm

    ZHOU Yu. Analysis of rail surface roughness level spectrum for urban rail transit[J]. Urban Mass Transit, 2014, 17(4): 18-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201404006.htm
    [4] GRASSIE S L. Measurement of longitudinal rail irregularities and criteria for acceptable grinding[J]. Journal of Sound and Vibration, 1999, 227(5): 949-964. doi: 10.1006/jsvi.1999.2980
    [5] LEI Xiao-yan, ZHANG Bin. Analysis of dynamic behavior for slab track of high-speed railway based on vehicle and track elements[J]. Journal of Transportation Engineering, 2011, 137(4): 227-240. doi: 10.1061/(ASCE)TE.1943-5436.0000207
    [6] LEI Xiao-yan, WANG Jian. Dynamic analysis of the train and slab track coupling system with finite elements in a moving frame of reference[J]. Journal of Vibration and Control, 2014, 20(9): 1301-1317. doi: 10.1177/1077546313480540
    [7] WANG Kai-yun, LIU Peng-fei, ZHAI Wan-ming, et al. Wheel/rail dynamic interaction due to excitation of rail corrugation in high-speed railway[J]. Science China Technological Sciences, 2015, 58(2): 226-235. doi: 10.1007/s11431-014-5633-y
    [8] WANG P, REN J J; XIANG R, et al. Influence of rub-plate length on forces and displacements of longitudinally coupled slab track for a bridge turnout[J]. Journal of Rail and Rapid Transit, 2012, 226(3): 284-293. doi: 10.1177/0954409711420776
    [9] 高亮, 王璞, 蔡小培, 等. 基于多车精细建模的曲线地段重载列车-轨道系统动力性能研究[J]. 振动与冲击, 2014, 33(22): 1-6, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422001.htm

    GAO Liang, WANG Pu, CAI Xiao-pei, et al. Dynamic characteristics of train-track system in curved track sections based on elaborate multi-vehicle model[J]. Journal of Vibration and Shock, 2014, 33(22): 1-6, 12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422001.htm
    [10] 翟婉明, 韩卫军, 蔡成标, 等. 高速铁路板式轨道动力特性研究[J]. 铁道学报, 1999, 21(6): 65-69. doi: 10.3321/j.issn:1001-8360.1999.06.016

    ZHAI Wan-ming, HAN Wei-jun, CAI Cheng-biao, et al. Dynamic properties of high-speed railway slab tracks[J]. Journal of the China Railway Society, 1999, 21(6): 65-69. (in Chinese). doi: 10.3321/j.issn:1001-8360.1999.06.016
    [11] 周永健, 练松良, 杨文忠. 轨面短波不平顺对轮轨力影响的研究[J]. 华东交通大学学报, 2009, 26(4): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT200904005.htm

    ZHOU Yong-jian, LIAN Song-liang, YANG Wen-zhong. Research of the impact of short wave track irregularity on the wheel-rail force[J]. Journal of East China Jiaotong University, 2009, 26(4): 6-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT200904005.htm
    [12] 李斌, 刘学毅. 客运专线铁道车辆随机振动特性[J]. 西南交通大学学报, 2010, 45(2): 191-195, 212. doi: 10.3969/j.Issn.0258-2724.2010.02.005

    LI Bin, LIU Xue-yi. Random vibration property of highspeed railway vehicle in passenger dedicated line[J]. Journal of Southwest Jiaotong University, 2010, 45(2): 191-195, 212. (in Chinese). doi: 10.3969/j.Issn.0258-2724.2010.02.005
    [13] 毛晓君, 周宇, 许玉德. 轨面短波不平顺时域反演算法研究[J]. 华东交通大学学报, 2014, 31(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201401002.htm

    MAO Xiao-jun, ZHOU Yu, XU Yu-de. Time domain inversion algorithm for rail surface irregularities[J]. Journal of East China Jiaotong University, 2014, 31(1): 7-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201401002.htm
    [14] 徐庆元. 短波随机不平顺对列车-板式无砟轨道-桥梁系统动力特性影响[J]. 土木工程学报, 2011, 44(10): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htm

    XU Qing-yuan. Influence of short-wave random irregularity on the dynamic characteristics of train-slab track-bridge system[J]. China Civil Engineering Journal, 2011, 44(10): 132-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htm
    [15] 韦红亮, 练松良, 刘扬. 城市轨道交通轨面短波不平顺测试分析[J]. 华东交通大学学报, 2011, 28(4): 33-37. doi: 10.3969/j.issn.1005-0523.2011.04.007

    WEI Hong-liang, LIAN Song-liang, LIU Yang. Experimental study on rail surface shortwave irregularity in urban mass transit[J]. Journal of East China Jiaotong University, 2011, 28(4): 33-37. (in Chinese). doi: 10.3969/j.issn.1005-0523.2011.04.007
    [16] 陈宪麦, 王澜, 陶夏新, 等. 基于小波分析理论的轨道不平顺分析[J]. 铁道工程学报, 2008, 25(1): 57-61, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200801012.htm

    CHEN Xian-mai, WANG Lan, TAO Xia-xin, et al. Analysis of track irregularity with wavelets analysis theory[J]. Journal of Railway Engineering Society, 2008, 25(1): 57-61, 71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200801012.htm
    [17] 徐磊, 陈宪麦, 徐伟昌, 等. 基于小波和Wigner-Ville分布的轨道不平顺特征识别[J]. 中南大学学报: 自然科学版, 2013, 44(8): 3344-3350. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201308036.htm

    XU Lei, CHEN Xian-mai, XU Wei-chang, et al. Explored of track irregularity's characteristic identification based on wavelet method and Wigner-Ville distribution[J]. Journal of Central South University: Science and Technology, 2013, 44(8): 3344-3350. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201308036.htm
    [18] 吕宏, 李再帏, 何越磊. 考虑波长因素的轨道不平顺预测研究[J]. 铁道科学与工程学报, 2015, 12(6): 1312-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201506008.htm

    LU Hong, LI Zai-wei, HE Yue-lei. The prediction method considering the factors of track irregularity wavelength[J]. Journal of Railway Science and Engineering, 2015, 12(6): 1312-1318. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201506008.htm
    [19] 韩晋, 杨岳, 陈峰, 等. 基于小波变换的轨道检测数据滤波方法[J]. 铁道科学与工程学报, 2013, 10(5): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201305022.htm

    HAN Jin, YANG Yue, CHEN Feng, et al. Data filtering approach of rail detection based on wavelet transform[J]. Journal of Railway Science and Engineering, 2013, 10(5): 116-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201305022.htm
    [20] DAUBECHIES I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996.
    [21] 刘秀波, 吴卫新. 钢轨焊接接头短波不平顺功率谱分析[J]. 中国铁道科学, 2000, 21(2): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200002003.htm

    LIU Xiu-bo, WU Wei-xin. PSD analysis of shortwave irregularity on welded joints[J]. China Railway Science, 2000, 21(2): 26-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200002003.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  123
  • PDF下载量:  896
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-30
  • 刊出日期:  2016-02-25

目录

    /

    返回文章
    返回