留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高铁膨胀土新型路堑基床动力特性与参数敏感性

杨果林 邱明明 杨啸 房以河

杨果林, 邱明明, 杨啸, 房以河. 高铁膨胀土新型路堑基床动力特性与参数敏感性[J]. 交通运输工程学报, 2016, 16(1): 63-72. doi: 10.19818/j.cnki.1671-1637.2016.01.008
引用本文: 杨果林, 邱明明, 杨啸, 房以河. 高铁膨胀土新型路堑基床动力特性与参数敏感性[J]. 交通运输工程学报, 2016, 16(1): 63-72. doi: 10.19818/j.cnki.1671-1637.2016.01.008
YANG Guo-lin, QIU Ming-ming, YANG Xiao, FANG Yi-he. Dynamic characteristics and parameter sensitivities of new cutting subgrade for high-speed railway in expansive soil area[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 63-72. doi: 10.19818/j.cnki.1671-1637.2016.01.008
Citation: YANG Guo-lin, QIU Ming-ming, YANG Xiao, FANG Yi-he. Dynamic characteristics and parameter sensitivities of new cutting subgrade for high-speed railway in expansive soil area[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 63-72. doi: 10.19818/j.cnki.1671-1637.2016.01.008

高铁膨胀土新型路堑基床动力特性与参数敏感性

doi: 10.19818/j.cnki.1671-1637.2016.01.008
基金项目: 

国家自然科学基金项目 51478484

国家自然科学基金项目 51278499

详细信息
    作者简介:

    杨果林(1963-), 男, 湖南益阳人, 中南大学教授, 工学博士, 从事道路与铁道工程研究

  • 中图分类号: U213.1

Dynamic characteristics and parameter sensitivities of new cutting subgrade for high-speed railway in expansive soil area

More Information
  • 摘要: 进行了云桂高铁膨胀土新型路堑基床综合试验段现场激振试验, 借助有限差分软件FLAC3D, 建立了三维轨道-路基-地基动力学模型, 分析了新型路堑基床动力响应与防排水结构层参数敏感性。分析结果表明: 铺设新型防排水结构层可加速基床内动应力的衰减, 降低路基表面动位移; 增加防排水结构层厚度和弹性模量可降低基床动位移, 减弱防排水结构层下方基床动应力, 但会提高防排水结构层顶面的动应力水平; 防排水结构层铺设位置下移时会增大路基表面动应力, 但对路基表面动位移影响不大; 为满足《高速铁路设计规范》(TB 10621—2009)要求, 建议防排水结构层铺设厚度不小于15 cm; 路基表面动应力、动位移与地基表面动应力敏感性因素依次是防排水结构层的铺设位置、弹性模量与铺设厚度; 考虑新型防排水结构层参数对基床动响应的影响, 确定的最优方案为: 铺设厚度为20 cm, 弹性模量为1.0 GPa, 铺设位置为基床表层底部。

     

  • 图  1  新型路堑基床结构

    Figure  1.  New cutting subgrade structure

    图  2  轨道-路基-地基系统计算模型

    Figure  2.  Computational model of track-subgrade-foundation system

    图  3  竖向动应力随深度衰减曲线

    Figure  3.  Attenuation curves of vertical dynamic stress with depth

    图  4  动应力衰减系数比较

    Figure  4.  Comparison of attenuation coefficients of dynamic stress

    图  5  竖向动应力沿横向距离分布曲线

    Figure  5.  Distribution curves of vertical dynamic stress with lateral distance

    图  6  竖向动位移随深度衰减曲线

    Figure  6.  Attenuation curves of vertical dynamic displacement with depth

    图  7  竖向动位移沿横向距离分布曲线

    Figure  7.  Distribution curves of vertical dynamic displacement with lateral distance

    图  8  振动速度随深度衰减曲线

    Figure  8.  Attenuation curves of vibration velocity with depth

    图  9  振动速度衰减系数比较

    Figure  9.  Comparison of attenuation coefficients of vibration velocity

    图  10  振动速度沿横向距离分布曲线

    Figure  10.  Distribution curves of vibration velocity with lateral distance

    图  11  竖向动应力随防排水结构层厚度变化曲线

    Figure  11.  Changing curves of vertical dynamic stress with thickness of water-proof layer

    图  12  竖向动位移随防排水结构层厚度变化曲线

    Figure  12.  Changing curves of vertical dynamic displacement with thickness of water-proof layer

    图  13  竖向动应力随防排水结构层弹性模量变化曲线

    Figure  13.  Changing curves of vertical dynamic stress with elastic modulus of water-proof layer

    图  14  竖向动位移随防排水结构层弹性模量变化曲线

    Figure  14.  Changing curves of vertical dynamic displacement with elastic modulus of water-proof layer

    图  15  竖向动应力随防排水结构层位置变化曲线

    Figure  15.  Changing curves of vertical dynamic stress with position of water-proof layer

    图  16  竖向动位移随防排水结构层位置变化曲线

    Figure  16.  Changing curves of vertical dynamic displacement with position of water-proof layer

    图  17  参数敏感性对比

    Figure  17.  Comparison of parametric sensitivities

    表  1  计算参数

    Table  1.   Computational parameters

    下载: 导出CSV

    表  2  动应力拟合关系

    Table  2.   Fitting relations of dynamic stresses

    下载: 导出CSV

    表  3  动位移拟合关系

    Table  3.   Fitting relations of dynamic displacements

    下载: 导出CSV

    表  4  振动速度拟合关系式

    Table  4.   Fitting relations of vibration velocities

    下载: 导出CSV

    表  5  因素水平

    Table  5.   Factor levels

    下载: 导出CSV

    表  6  试验结果

    Table  6.   Test results

    下载: 导出CSV

    表  7  影响因素极差分析结果

    Table  7.   Range analysis result of influence factors

    下载: 导出CSV
  • [1] ITO M, AZAM S. Engineering characteristics of a glaciolacustrine clay deposit in a semi-arid climate[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(4): 551-557. doi: 10.1007/s10064-009-0229-7
    [2] ITO M, AZAM S. Determination of swelling and shrinkage properties of undisturbed expansive soils[J]. Geotechnical and Geological Engineering, 2010, 28(4): 413-422. doi: 10.1007/s10706-010-9301-0
    [3] TRIPATHY S, SUBBA RAO K S. Cyclic swell-shrink behaviour of a compacted expansive soil[J]. Geotechnical and Geological Engineering, 2009, 27(1): 89-103. doi: 10.1007/s10706-008-9214-3
    [4] 冯玉勇, 张永双, 曲永新, 等. 南昆铁路百色盆地膨胀土路堤病害机理研究[J]. 岩土工程学报, 2001, 23(4): 463-467. doi: 10.3321/j.issn:1000-4548.2001.04.017

    FENG Yu-yong, ZHANG Yong-shuang, QU Yong-xin, et al. Mechanism of embankment defects caused by expensive soils in Baise Basin, Nankun Railway[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 463-467. (in Chinese). doi: 10.3321/j.issn:1000-4548.2001.04.017
    [5] 田海波, 王炳龙, 许恺. 膨胀土区域路堑换填厚度分析[J]. 交通运输工程学报, 2006, 6(2): 22-25. doi: 10.3321/j.issn:1671-1637.2006.02.005

    TIAN Hai-bo, WANG Bing-long, XU Kai. Replacement thickness analysis of cutting in expansive soil area[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 22-25. (in Chinese). doi: 10.3321/j.issn:1671-1637.2006.02.005
    [6] 梁波, 罗红, 孙常新. 高速铁路振动荷载的模拟研究[J]. 铁道学报, 2006, 28(4): 89-94. doi: 10.3321/j.issn:1001-8360.2006.04.018

    LIANG Bo, LUO Hong, SUN Chang-xin. Simulated study on vibration load of high speed railway[J]. Journal of the China Railway Society, 2006, 28(4): 89-94. (in Chinese). doi: 10.3321/j.issn:1001-8360.2006.04.018
    [7] ANYAKWO A, PISLARU C, BALL A. A new method for modelling and simulation of the dynamic behaviour of the wheel-rail contact[J]. International Journal of Automation and Computing, 2012, 9(3): 237-247. doi: 10.1007/s11633-012-0640-6
    [8] 张千里, 韩自力, 吕宾林. 高速铁路路基基床结构分析及设计方法[J]. 中国铁道科学, 2005, 26(6): 53-57. doi: 10.3321/j.issn:1001-4632.2005.06.011

    ZHANG Qian-li, HAN Zi-li, LU Bin-lin. Structural analysis and design method for subgrade bed of high-speed railway[J]. China Railway Science, 2005, 26(6): 53-57. (in Chinese). doi: 10.3321/j.issn:1001-4632.2005.06.011
    [9] GAO G Y, CHEN Q S, HE J F, et al. Investigation of ground vibration due to trains moving on saturated multilayered ground by 2.5D finite element method[J]. Soil Dynamics and Earthquake Engineering, 2012, 40(1): 87-98. https://www.sciencedirect.com/science/article/pii/S026772611100323X
    [10] TISHIKAWA T, SEKINE E, MIURA S. Cyclic deformation of granular material subjected to moving-wheel loads[J]. Canadian Geotechnical Journal, 2011, 48(5): 691-703. doi: 10.1139/t10-099
    [11] COSTA P A, CALCADA R, CARDOSO A S, et al. Influence of soil non-linearity on the dynamic response of high-speed railway track[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(4): 221-235. doi: 10.1016/j.soildyn.2009.11.002
    [12] COSTA P A, COLACO A, CALCADA R, et al. Critical speed of railway tracks. Detailed and simplified approaches[J]. Transportation Geotechnics, 2015, 2: 30-46. doi: 10.1016/j.trgeo.2014.09.003
    [13] 荆志东, 刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. 岩土力学, 2010, 31(7): 2116-2121. doi: 10.3969/j.issn.1000-7598.2010.07.016

    JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. Rock and Soil Mechanics, 2010, 31(7): 2116-2121. (in Chinese). doi: 10.3969/j.issn.1000-7598.2010.07.016
    [14] CAI Yuan-qiang, CHEN Yao, CAO Zhi-gang, et al. Dynamic responses of a saturated poroelastic half-space generated by a moving truck on the uneven pavement[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 172-181. doi: 10.1016/j.soildyn.2014.10.014
    [15] SUN Hong-lei, CAI Yuan-qiang, XU Chang-jie. Three-dimensional simulation of track on poroelastic half-space vibrations due to a moving point load[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 958-967. doi: 10.1016/j.soildyn.2010.04.007
    [16] CAI Yuan-qiang, SUN Hong-lei, XU Chang-jie. Three-dimensional analyses of dynamic responses of track-ground system subjected to a moving train load[J]. Computers and Structures, 2008, 86(7): 816-824. https://www.sciencedirect.com/science/article/pii/S0045794907002404
    [17] SHAN Yao, ALBERS B, SAVIDIS S A. Influence of different transition zones on the dynamic response of tracksubgrade systems[J]. Computers and Geotechnics, 2013, 48: 21-28. https://www.sciencedirect.com/science/article/pii/S0266352X12001887
    [18] 孔祥辉, 蒋关鲁, 李安洪, 等. 基于三维数值模拟的铁路路基动力特性分析[J]. 西南交通大学学报, 2014, 49(3): 406-411. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201403006.htm

    KONG Xiang-hui, JIANG Guan-lu, LI An-hong, et al. Analysis of dynamic characteristics of railway subgrade based on three dimensional numerical simulation[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 406-411. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201403006.htm
    [19] 孙常新, 胡金虎, 梁波. 准高速铁路路基动力响应数值模拟[J]. 计算力学学报, 2010, 27(1): 173-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201001029.htm

    SUN Chang-xin, HU Jin-hu, LIANG Bo. Numerical simulation of dynamic response for quasi-high speed railway subgrade[J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 173-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201001029.htm
    [20] TAKEMIYA H. Simulation of track-ground vibrations due to a high-speed train: the case of X-2000 at Ledsgard[J]. Journal of Sound and Vibration, 2003, 261(3): 503-526.
    [21] BIAN Xue-cheng, JIANG Hong-guang, CHENG Chong, et al. Full-scale model testing on a ballastless high-speed railway under simulated train moving loads[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 368-384. https://www.sciencedirect.com/science/article/pii/S0267726114001754
    [22] 蒋红光, 边学成, 徐翔, 等. 列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J]. 岩土工程学报, 2014, 36(2): 354-362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402016.htm

    JIANG Hong-guang, BIAN Xue-cheng, XU Xiang, et al. Full-scale model tests on dynamic performances of ballastless high-speed railways under moving train loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 354-362. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402016.htm
    [23] 杨果林, 王亮亮, 房以河, 等. 云桂高速铁路不同防水层基床动力特性现场试验[J]. 岩石力学与工程学报, 2014, 33(8): 1672-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408020.htm

    YANG Guo-lin, WANG Liang-liang, FANG Yi-he, et al. Insitu test on dynamic characteristics of cutting subgrade with different waterproof layers along Yun-Gui High-Speed Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1672-1678. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408020.htm
    [24] 王亮亮, 杨果林. 半刚性防水层对基床动力特性影响的模型试验[J]. 中南大学学报: 自然科学版, 2013, 44(10): 4244-4250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201310040.htm

    WANG Liang-liang, YANG Guo-lin. Model test on effects of subgrade dynamic characteristics by using semi-rigid waterproof structure layer[J]. Journal of Central South University: Science and Technology, 2013, 44(10): 4244-4250. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201310040.htm
    [25] 王亮亮, 杨果林, 房以河, 等. 速铁路膨胀土路堑全封闭基床动力特性现场试验[J]. 岩土工程学报, 2014, 36(4): 640-645. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404009.htm

    WANG Liang-liang, YANG Guo-lin, FANG Yi-he, et al. Insitu tests on dynamic character of fully-enclosed cutting subgrade of high-speed railways in expansive soil areas[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 640-645. (in Chinese. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404009.htm
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  746
  • HTML全文浏览量:  117
  • PDF下载量:  955
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-10
  • 刊出日期:  2016-02-25

目录

    /

    返回文章
    返回