留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动汽车电池温度加权PID控制

秦大同 黄晶莹 刘永刚 胡明辉

秦大同, 黄晶莹, 刘永刚, 胡明辉. 电动汽车电池温度加权PID控制[J]. 交通运输工程学报, 2016, 16(1): 73-79. doi: 10.19818/j.cnki.1671-1637.2016.01.009
引用本文: 秦大同, 黄晶莹, 刘永刚, 胡明辉. 电动汽车电池温度加权PID控制[J]. 交通运输工程学报, 2016, 16(1): 73-79. doi: 10.19818/j.cnki.1671-1637.2016.01.009
QIN Da-tong, HUANG Jing-ying, LIU Yong-gang, HU Ming-hui. Weighted PID control of battery temperature for electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 73-79. doi: 10.19818/j.cnki.1671-1637.2016.01.009
Citation: QIN Da-tong, HUANG Jing-ying, LIU Yong-gang, HU Ming-hui. Weighted PID control of battery temperature for electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 73-79. doi: 10.19818/j.cnki.1671-1637.2016.01.009

电动汽车电池温度加权PID控制

doi: 10.19818/j.cnki.1671-1637.2016.01.009
基金项目: 

国家科技支撑计划项目 2013BAG12B01

详细信息
    作者简介:

    秦大同(1956-), 男, 重庆人, 重庆大学教授, 工学博士, 从事电动汽车关键技术研究

  • 中图分类号: U463.633

Weighted PID control of battery temperature for electric vehicle

More Information
    Author Bio:

    QIN Da-tong (1956-), male, professor, PhD, +86-23-65104217, dtqin@cqu.edu.cn

  • 摘要: 针对纯电动汽车锂离子电池, 建立了二自由度集中参数电池热模型, 结合汽车行驶动力学模型, 得到了电动汽车实际运行工况下电池的实时热响应模型。通过混合动力脉冲能力特性试验获得了电池热模型的参数, 分析不同运行工况下电池的热响应, 提出了基于加权比例积分微分法的再生制动控制策略。在满足制动安全性的前提下, 通过调节电机制动力分配系数来实现电池充电电流的主动控制, 从而控制生热源。在典型循环工况下, 对比分析了再生制动控制策略与传统制动控制方案的电池热响应。分析结果表明: 再生制动对电池的温升产生一定影响, 汽车运行工况中再生制动的比例越大, 电池温升越快; 再生制动控制方案能够有效地调节充电电流幅值, 在美国激进高速循环工况的长下坡条件下, 电池的最高温度比传统制动控制方案降低了2℃, 电池荷电量提高了10%, 因此, 再生制动控制策略能在确保能量回收的同时兼顾电池温升的主动控制。

     

  • 图  1  电池组结构

    Figure  1.  Battery pack structure

    图  2  电池内阻

    Figure  2.  Internal resistances of battery

    图  3  电池开路电压

    Figure  3.  Open circuit voltages of battery

    图  4  制动强度与附着系数曲线

    Figure  4.  Curves of braking strength and adhesion coefficient

    图  5  车速与时间关系曲线

    Figure  5.  Relation curves of vehicle speed and time

    图  6  ECE-EUDC、ECE-EUDC Low Duty与HWFET工况下的电池温度响应

    Figure  6.  Temperature responses of battery under ECE-EUDC, ECE-EUDC Low Duty and HWFET

    图  7  US06工况下的电池温度响应

    Figure  7.  Temperature responses of battery under US06

    图  8  各行驶工况的电流分布

    Figure  8.  Current distributions in different driving cycles

    图  9  控制前后电池温度响应对比

    Figure  9.  Comparison of temperature responses of battery before and after control

    图  10  控制前后电池SOC变化对比

    Figure  10.  Comparison of SOC variations of battery before and after control

    图  11  控制前后电池充电电流比例分布对比

    Figure  11.  Comparison of discharge current distributions of battery before and after control

    图  12  控制前后US06工况下电池温度响应对比

    Figure  12.  Comparison of temperature responses of battery before and after control under US06

    图  13  控制前后US06工况下电池SOC变化对比

    Figure  13.  Comparison of SOC variations of battery before and after control under US06

    图  14  控制前后US06工况下电池充电电流比例分布对比

    Figure  14.  Comparison of discharge current distributions of battery before and after control under US06

  • [1] WILLIFORD R E, VISWANATHAN V V, ZHANG Ji-guang. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries[J]. Journal of Power Sources, 2009, 189(1): 101-107. doi: 10.1016/j.jpowsour.2008.10.078
    [2] SAITO Y. Thermal behaviors of lithium-ion batteries during high-rate pulse cycling[J]. Journal of Power Sources, 2005, 146(1): 770-774. https://www.sciencedirect.com/science/article/pii/S0378775305005008
    [3] SELMAN J R, AL HALLAJ S, UCHIDA I, et al. Cooperative research on safety fundamentals of lithium batteries[J]. Journal of Power Sources, 2001, 97: 726-732. https://www.sciencedirect.com/science/article/pii/S0378775301007327
    [4] KIZILEL R, SABBAH R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2): 1105-1112. doi: 10.1016/j.jpowsour.2009.06.074
    [5] HAMUT H S, DINCER I, NATERER G F. Analysis and optimization of hybrid electric vehicle thermal management systems[J]. Journal of Power Sources, 2014, 247: 643-654. doi: 10.1016/j.jpowsour.2013.08.131
    [6] FAN Li-wu, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238: 301-312. doi: 10.1016/j.jpowsour.2013.03.050
    [7] RAO Zhong-hao, WANG Shuang-feng, WU Mao-chun, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management, 2013, 65: 92-97. doi: 10.1016/j.enconman.2012.08.014
    [8] JAVANI N, DINCER I, NATERER G F. Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles[J]. Energy, 2012, 46(1): 109-116. doi: 10.1016/j.energy.2012.02.027
    [9] BALAKRISHNAN P G, RAMESH R, KUMAR T P. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. https://www.sciencedirect.com/science/article/pii/S0378775305016629
    [10] ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources, 2006, 158(1): 535-542. doi: 10.1016/j.jpowsour.2005.08.049
    [11] BUCHMAN I. Batteries in a Portable World: a Handbook on Rechargeable Batteries for Non-Engineers[M]. Richmond: Cadex Electronics Inc., 2001.
    [12] BAPTISTA P, TOMÁS M, SILVA C. Plug-in hybrid fuel cell vehicles market penetration scenarios[J]. International Journal of Hydrogen Energy, 2010, 35(18): 10024-10030. doi: 10.1016/j.ijhydene.2010.01.086
    [13] AVADIKYAN A, LLERENA P. A real options reasoning approach to hybrid vehicle investments[J]. Technological Forecasting and Social Change, 2010, 77(4): 649-661. doi: 10.1016/j.techfore.2009.12.002
    [14] CHACKO S, CHUNG Y M. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213: 296-303. doi: 10.1016/j.jpowsour.2012.04.015
    [15] KIM U S, YI J, SHIN C B, et al. Modelling the thermal behaviour of a lithium-ion battery during charge[J]. Journal of Power Sources, 2011, 196(11): 5115-5121. doi: 10.1016/j.jpowsour.2011.01.103
    [16] SAW L H, YE Y, TAY A A O. Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles[J]. Applied Energy, 2014, 131: 97-107. https://www.sciencedirect.com/science/article/pii/S0306261914005984
    [17] KISE M, YOSHIOKA S, HAMANO K, et al. Development of new safe electrode for lithium rechargeable battery[J]. Journal of Power Sources, 2005, 146(1/2): 775-778. https://www.sciencedirect.com/science/article/pii/S0378775305005033
    [18] INUI Y, KOBAYASHI Y, WATANABE Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries[J]. Energy Conversion and Management, 2007, 48(7): 2103-2109. https://www.sciencedirect.com/science/article/pii/S0196890407000039
    [19] PARK C, JAURA A K. Dynamic thermal model of Li-ion battery for predictive behavior in hybrid and fuel cell vehicles[J]. SAE Technical Paper, 2003-01-2286. https://www.sae.org/publications/technical-papers/content/2003-01-2286/
    [20] MOTLOCH C G, CHRISTOPHERSEN J P, BELT J R, et al. High-power battery testing procedures and analytical methodologies for HEV's[J]. SAE Technical Paper, 2002-01-1950. https://www.sae.org/publications/technical-papers/content/2002-01-1950/
    [21] CHEN Y, EVANS J W. Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile[J]. Journal of the Electrochemical Society, 1994, 141(11): 2947-2955. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.824.7700&rep=rep1&type=pdf
    [22] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. https://escholarship.org/uc/item/9fx5f0h8
    [23] RAJAMANI R. Vehicle Dynamics and Control[M]. Berlin: Springer, 2011.
  • 加载中
图(14)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  141
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-15
  • 刊出日期:  2016-02-25

目录

    /

    返回文章
    返回