留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

备用制动系统性能比较

祝露 王晓东 吴萌岭 田春

祝露, 王晓东, 吴萌岭, 田春. 备用制动系统性能比较[J]. 交通运输工程学报, 2016, 16(1): 80-87. doi: 10.19818/j.cnki.1671-1637.2016.01.010
引用本文: 祝露, 王晓东, 吴萌岭, 田春. 备用制动系统性能比较[J]. 交通运输工程学报, 2016, 16(1): 80-87. doi: 10.19818/j.cnki.1671-1637.2016.01.010
ZHU Lu, WANG Xiao-dong, WU Meng-ling, TIAN Chun. Performance comparison of backup brake system[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 80-87. doi: 10.19818/j.cnki.1671-1637.2016.01.010
Citation: ZHU Lu, WANG Xiao-dong, WU Meng-ling, TIAN Chun. Performance comparison of backup brake system[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 80-87. doi: 10.19818/j.cnki.1671-1637.2016.01.010

备用制动系统性能比较

doi: 10.19818/j.cnki.1671-1637.2016.01.010
基金项目: 

国家科技支撑计划项目 2015BAG12B01-20

详细信息
    作者简介:

    祝露(1990-), 女, 湖北武汉人, 同济大学工学博士研究生, 从事列车制动系统研究

    吴萌岭(1959-), 男, 浙江杭州人, 同济大学教授, 工学博士

  • 中图分类号: U260.138

Performance comparison of backup brake system

More Information
  • 摘要: 为了比较3种不同备用制动系统的差异, 以制动距离与车钩力为评价指标, 采用AMESim与Simulink软件联合搭建列车制动系统仿真模型与性能参数分析模型。在直通电空制动系统故障情况下, 分析了不同备用制动系统时的制动特性。以120 km·h-1满载运行的某列车为例, 在某单车车辆直通电空制动系统故障后, 对比分析故障、单车热备切换制动、全车热备切换制动与冷备切换制动4种工况下的列车制动距离与车钩力变化趋势, 研究了故障车辆位置对制动距离与车钩力的影响。分析结果表明: 与无备用制动系统的故障工况相比, 实施单车热备切换制动方式后, 制动距离最大减小10.14%, 最大拉钩力最大减小84.59%, 最大压钩力最大减小76.87%;实施全车热备切换制动方式后, 制动距离最大减小6.41%, 最大拉钩力最大减小46.24%, 最大压钩力最大减小10.24%;实施冷备切换制动方式后, 制动距离最小增大3.13%, 最大拉钩力最大减小48.73%, 最大压钩力最大减小25.58%;随着故障车辆的后移, 最大压钩力逐渐增大, 最大拉钩力逐渐减小, 若此时采用单车热备切换制动方式, 最大压钩力与最大拉钩力均呈现逐渐增大的趋势。

     

  • 图  1  单车制动系统模型

    Figure  1.  Braking system model of single vehicle

    图  2  仿真模型控制流程

    Figure  2.  Control flow of simulation model

    图  3  车辆i受力

    Figure  3.  Forces of vehicle i

    图  4  联合仿真模型的控制流程

    Figure  4.  Control flow of co-simulation model

    图  5  制动缸压强曲线

    Figure  5.  Pressure curves of brake cylinder

    图  6  紧急制动时的速度-时间曲线

    Figure  6.  Spead-time curve of emergency brake

    图  7  Tc1故障时的最大车钩力

    Figure  7.  Maximum coupler forces when fault occurs in Tc1

    图  8  M1故障时的最大车钩力

    Figure  8.  Maximum coupler forces when fault occurs in M1

    图  9  M2故障时的最大车钩力

    Figure  9.  Maximum coupler forces when fault occurs in M2

    图  10  T3故障时的最大车钩力

    Figure  10.  Maximum coupler forces when fault occurs in T3

    图  11  M3故障时的最大车钩力

    Figure  11.  Maximum coupler forces when fault occurs in M3

    图  12  M4故障时的最大车钩力

    Figure  12.  Maximum coupler forces when fault occurs in M4

    图  13  M5故障时的最大车钩力

    Figure  13.  Maximum coupler forces when fault occurs in M5

    图  14  M6故障时的最大车钩力

    Figure  14.  Maximum coupler forces when fault occurs in M6

    图  15  Tc2故障时的最大车钩力

    Figure  15.  Maximum coupler forces when fault occurs in Tc2

    图  16  各工况下最大压钩力分布

    Figure  16.  Distribution of maximum pressed coupler forces in different conditions

    图  17  各工况下最大拉钩力分布

    Figure  17.  Distribution of maximum tensile coupler forces in different conditions

    图  18  两种工况最大车钩力对比

    Figure  18.  Comparison of maximum coupler forces in 2 conditions

    表  1  车辆基本参数

    Table  1.   Basic parameters of vehicles

    下载: 导出CSV

    表  2  列车模型参数

    Table  2.   Parameters of train model

    下载: 导出CSV

    表  3  制动系统参数

    Table  3.   Parameters of braking system

    下载: 导出CSV

    表  4  不同工况的制动距离对比

    Table  4.   Comparison of braking distances in different conditions

    下载: 导出CSV
  • [1] 阳靖. 马来西亚动车组备用制动系统概述[J]. 电力机车与城轨车辆, 2013, 36(2): 15-18. doi: 10.3969/j.issn.1672-1187.2013.02.004

    YANG Jing. Summary of backup brake system for Malaysia EMU[J]. Electric Locomotives and Mass Transit Vehicles, 2013, 36(2): 15-18. (in Chinese). doi: 10.3969/j.issn.1672-1187.2013.02.004
    [2] 武青海, 张宝, 王群伟. 和谐号动车组备用制动系统[J]. 铁道机车车辆, 2011, 31(5): 61-63. doi: 10.3969/j.issn.1008-7842.2011.05.013

    WU Qing-hai, ZHANG Bao, WANG Qun-wei. Back-up brake system of the CRH3 EMU[J]. Railway Locomotive and Car, 2011, 31(5): 61-63. (in Chinese). doi: 10.3969/j.issn.1008-7842.2011.05.013
    [3] 李和平, 曹宏发, 杨伟君, 等. 和谐号动车组制动技术概述[J]. 铁道机车车辆, 2011, 31(5): 1-11, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201105004.htm

    LI He-ping, CAO Hong-fa, YANG Wei-jun, et al. A summary of Hexie EMU braking technology[J]. Railway Locomotive and Car, 2011, 31(5): 1-11, 38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201105004.htm
    [4] 乔峰, 亢磊, 沈迪. CRH380CL新一代高速动车组制动系统研制[J]. 铁道机车车辆, 2013, 33(6): 10-13, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201306005.htm

    QIAO Feng, KANG Lei, SHEN Di. Research and manufacture of braking system for CRH380CL new generation high-speed EMU[J]. Railway Locomotive and Car, 2013, 33(6): 10-13, 33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201306005.htm
    [5] 林祜亭. "中华之星"电动车组制动系统[J]. 机车电传动, 2003(5): 80-84. doi: 10.3969/j.issn.1000-128X.2003.05.021

    LIN Hu-ting. Braking system of"China Star"High Speed EMU[J]. Electric Drive for Locomotives, 2003(5): 80-84. (in Chinese). doi: 10.3969/j.issn.1000-128X.2003.05.021
    [6] 万国强. "中华之星"动车组拖车制动系统简介[J]. 铁道机车车辆, 2006, 26(3): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200603010.htm

    WAN Guo-qiang. Trailer's braking system of Central China Star EMU[J]. Railway Locomotive and Car, 2006, 26(3): 37-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200603010.htm
    [7] 林祜亭. "中华之星"动车组制动系统的技术分析和评估[J]. 铁道机车车辆, 2003, 23(3): 1-8, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200303000.htm

    LIN Hu-ting. Analyzing and estimating for"China Star"electric motor train unit brake system[J]. Railway Locomotive and Car, 2003, 23(3): 1-8, 39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200303000.htm
    [8] KERMARREC A M, MERRER E L, SCOUARNEC N L, et al. Performance evaluation of a peer-to-peer backup system using buffering at the edge[J]. Computer Communications, 2014, 52(5): 71-81. https://www.sciencedirect.com/science/article/pii/S0140366414002230
    [9] LIN Y K, HUANG Cheng-fu. Backup reliability assessment within tolerable packet error rate for a multi-state unreliable vertex computer network[J]. Information Sciences, 2014, 277(2): 582-596.
    [10] LIMI H, SIDHU T S. A new local backup scheme considering simultaneous faults of protection IEDs in an IEC 61850-based substation[J]. International Journal of Electrical Power and Energy Systems, 2016, 77: 151-157. https://www.sciencedirect.com/science/article/pii/S0142061515004445
    [11] KOUBÀA M, BAKRI M, BOUALLÈGUE A. Survivable routing and wavelength assignment performance improvement using primary-backup multiplexing with 100%fault recovery guarantee[J]. Optical Switching and Networking, 2014, 12(3): 56-67. https://www.sciencedirect.com/science/article/abs/pii/S1573427713001239
    [12] LEVITIN G, XING Liu-dong, DAI Yuan-shun. Cold vs. hot standby mission operation cost minimization for 1-out-of-N systems[J]. European Journal of Operational Research, 2014, 234(1): 155-162. https://www.sciencedirect.com/science/article/pii/S0377221713008746
    [13] JIA Xiang, CHEN Hao, CHENG Zhi-jun, et al. A comparison between two stwitching policies for two-unit standby system[J]. Reliability Engineering and System Safety, 2016, 148: 109-118. https://www.sciencedirect.com/science/article/pii/S0951832015003580
    [14] LEVITIN G, XING Liu-dong, DAI Yuan-shun. Cold-standby sequencing optimization considering mission cost[J]. Reliability Engineering and System Safety, 2013, 118(10): 28-34. https://www.sciencedirect.com/science/article/pii/S0951832013001051
    [15] 李邦国, 杨伟君, 金哲, 等. 高速动车组备用制动系统仿真分析研究[J]. 铁道机车车辆, 2011, 31(5): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201105034.htm

    LI Bang-guo, YANG Wei-jun, JIN Zhe, et al. Modeling and simulation of backup brake for high-speed EMU[J]. Railway Locomotive and Car, 2011, 31(5): 124-127. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201105034.htm
    [16] 李亮. 基于AMESim的动车组制动系统仿真研究[D]. 成都: 西南交通大学, 2013.

    LI Liang. Simulation on braking system of EMU based on AMESim[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese).
    [17] 张晶. 动车组制动系统建模与仿真研究[D]. 成都: 西南交通大学, 2013.

    ZHANG Jing. Modeling and simulation research of EMU braking system[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese).
    [18] 许志泉. 基于AMESim动车组空气制动系统仿真与研究[D]. 成都: 西南交通大学, 2013.

    XU Zhi-quan. Simulation and study on air brake system of EMU based on AMESim[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese).
    [19] 左建勇, 王宗明, 吴萌岭. 地铁列车空气制动系统仿真模型[J]. 交通运输工程学报, 2013, 13(2): 42-47. http://transport.chd.edu.cn/article/id/201302006

    ZUO Jian-yong, WANG Zong-ming, WU Meng-ling. Simulation model of air braking system for subway train[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 42-47. (in Chinese). http://transport.chd.edu.cn/article/id/201302006
    [20] 魏伟, 赵旭宝, 姜岩, 等. 列车空气制动与纵向动力学集成仿真[J]. 铁道学报, 2012, 34(4): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201204010.htm

    WEI Wei, ZHAO Xu-bao, JIANG Yan, et al. The integrated model of train air brake and longitudinal dynamics[J]. Journal of the China Railway Society, 2012, 34(4): 39-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201204010.htm
    [21] CHOU M, XIA X, KAYSER C. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems[J]. Control Engineering Practice, 2007, 15(4): 501-509.
    [22] WU Qing, COLE C, LUO Shi-hui, et al. A review of dynamics modelling of friction draft gear[J]. Vehicle System Dynamics, 2014, 52(6): 733-758. https://trid.trb.org/view/1310803
    [23] XU Z Q, MA W H, WU Q, et al. Coupler rotation behaviour and its effect on heavy haul trains[J]. Vehicle System Dynamics, 2013, 51(12): 1818-1838. https://trid.trb.org/view/1278662
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  93
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-21
  • 刊出日期:  2016-02-25

目录

    /

    返回文章
    返回