留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型舰船编队相对导航方法比较

周红进 钟云海 李伟

周红进, 钟云海, 李伟. 大型舰船编队相对导航方法比较[J]. 交通运输工程学报, 2016, 16(1): 149-158. doi: 10.19818/j.cnki.1671-1637.2016.01.018
引用本文: 周红进, 钟云海, 李伟. 大型舰船编队相对导航方法比较[J]. 交通运输工程学报, 2016, 16(1): 149-158. doi: 10.19818/j.cnki.1671-1637.2016.01.018
ZHOU Hong-jin, ZHONG Yun-hai, LI Wei. Comparison of relative navigation methods for large vessel formation[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 149-158. doi: 10.19818/j.cnki.1671-1637.2016.01.018
Citation: ZHOU Hong-jin, ZHONG Yun-hai, LI Wei. Comparison of relative navigation methods for large vessel formation[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 149-158. doi: 10.19818/j.cnki.1671-1637.2016.01.018

大型舰船编队相对导航方法比较

doi: 10.19818/j.cnki.1671-1637.2016.01.018
基金项目: 

国家自然科学基金项目 41374018

海军大连舰艇学院2110工程三期资助学术预研课题 DLJY-XY2014007

详细信息
    作者简介:

    周红进(1978-),男,湖北咸宁人,海军大连舰艇学院讲师,工学博士,从事惯性导航和卫星导航技术研究

  • 中图分类号: U666.1

Comparison of relative navigation methods for large vessel formation

  • 摘要: 基于导航卫星伪距双差建立了相对导航模型, 设计了基于伪距单差的最小二乘算法、基于伪距双差的最小二乘算法、基于伪距单差的EKF算法与基于伪距双差的EKF算法, 并通过试验进行对比分析。研究结果表明: 基于伪距双差的相对导航模型可以消除电离层、对流层、多路径误差、卫星钟差与接收机钟差; 与最小二乘算法相比, EKF算法能够显著提高相对导航信息的解算精度; EKF算法下伪距双差的解算精度比伪距单差提高约10%;在几何精度因子最小的原则下, 卫星个数增多, 距离解算精度提高; 基线为2m时, 基于伪距双差的EKF算法所得距离解算精度可达到0.10m以内, 方位角解算精度可达到4.0°, 因此, EFK算法的精度和频率可满足大型舰船编队保持准动态的相对导航需求。

     

  • 图  1  基于伪距单差的相对导航模型

    Figure  1.  Relative navigation model based on pseudo-range single difference

    图  2  基于伪距双差的相对导航模型

    Figure  2.  Relative navigation model based on pseudo-range double-difference

    图  3  试验装置

    Figure  3.  Test devices

    图  4  算法1基于4颗卫星观测数据的距离曲线

    Figure  4.  Distance curves of algorithm 1 based on observation data of four satellites

    图  5  算法1基于4颗卫星观测数据的方位角曲线

    Figure  5.  Azimuth curves of algorithm 1 based on observation data of four satellites

    图  6  算法2基于4颗卫星观测数据的距离曲线

    Figure  6.  Distance curves of algorithm 2 based on observation data of four satellites

    图  7  算法2基于4颗卫星观测数据的方位角曲线

    Figure  7.  Azimuth curves of algorithm 2 based on observation data of four satellites

    图  8  算法3基于4颗卫星观测数据的距离曲线

    Figure  8.  Distance curves of algorithm 3 based on observation data of four satellites

    图  9  算法3基于4颗卫星观测数据的方位角曲线

    Figure  9.  Azimuth curves of algorithm 3 based on observation data of four satellites

    图  10  算法4基于4颗卫星观测数据的距离曲线

    Figure  10.  Distance curves of algorithm 4 based on observation data of four satellites

    图  11  算法4基于4颗卫星观测数据的方位角曲线

    Figure  11.  Azimuth curves of algorithm 4 based on observation data of four satellites

    图  12  算法1基于6颗卫星观测数据的距离曲线

    Figure  12.  Distance curves of algorithm l based on observation data of six satellites

    图  13  算法1基于6颗卫星观测数据的方位角曲线

    Figure  13.  Azimuth curves of algorithm 1 based on observation data of six satellites

    图  14  算法2基于6颗卫星观测数据的距离曲线

    Figure  14.  Distance curves of algorithm 2 based on observation data of six satellites

    图  15  算法2基于6颗卫星观测数据的方位角曲线

    Figure  15.  Azimuth curves of algorithm 2 based on observation data of six satellites

    图  16  算法3基于6颗卫星观测数据的距离曲线

    Figure  16.  Distance curves of algorithm 3 based on observation data of six satellites

    图  17  算法3基于6颗卫星观测数据的方位角曲线

    Figure  17.  Azimuth curves of algorithm 3 based on observation data of six satellites

    图  18  算法4基于6颗卫星观测数据的距离曲线

    Figure  18.  Distance curves of algorithm 4 based on observation data of six satellites

    图  19  算法4基于6颗卫星观测数据的方位角曲线

    Figure  19.  Azimuth curves of algorithm 4 based on observation data of six satellites

    图  20  算法1基于8颗卫星观测数据的距离曲线

    Figure  20.  Distance curves of algorithm 1 based on observation data of eight satellites

    图  21  算法1基于8颗卫星观测数据的方位角曲线

    Figure  21.  Azimuth curves of algorithm 1 based on observation data of eight satellites

    图  22  算法2基于8颗卫星观测数据的距离曲线

    Figure  22.  Distance curves of algorithm 2 based on observation data of eight satellites

    图  23  算法2基于8颗卫星观测数据的方位角曲线

    Figure  23.  Azimuth curves of algorithm 2 based on observation data of eight satellites

    图  24  算法3基于8颗卫星观测数据的距离曲线

    Figure  24.  Distance curves of algorithm 3 based on observation data of eight satellites

    图  25  算法3基于8颗卫星观测数据的方位角曲线

    Figure  25.  Azimuth curves of algorithm 3 based on observation data of eight satellites

    图  26  算法4基于8颗卫星观测数据的距离曲线

    Figure  26.  Distance curves of algorithm 4 based on observation data of eight satellites

    图  27  算法4基于8颗卫星观测数据的方位角曲线

    Figure  27.  Azimuth curves of algorithm 4 based on observation data of eight satellites

    表  1  基于4颗卫星的计算结果

    Table  1.   Calculated result based on four satellites

    表  2  基于6颗卫星的计算结果

    Table  2.   Calculated result based on six satellites

    表  3  基于8颗卫星的计算结果

    Table  3.   Calculated result based on eight satellites

  • [1] 李伟, 刘美红, 段登平. 基于简化差分插值滤波的编队卫星相对导航[J]. 上海交通大学学报, 2014, 48(2): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201402013.htm

    LI Wei, LIU Mei-hong, DUAN Deng-ping. Relative navigation for spacecraft formation based on simplified divided difference filter[J]. Journal of Shanghai Jiaotong University, 2014, 48(2): 229-233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201402013.htm
    [2] 武瑾媛, 房建成, 杨照华. 基于扩维卡尔曼滤波的火星探测器脉冲星相对导航方法[J]. 仪器仪表学报, 2013, 34(8): 1711-1716. doi: 10.3969/j.issn.0254-3087.2013.08.005

    WU Jin-yuan, FANG Jian-cheng, YANG Zhao-hua. ASUKF based relative navigation method for mars probe using pulsar[J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1711-1716. (in Chinese) doi: 10.3969/j.issn.0254-3087.2013.08.005
    [3] 刘雪奎, 孙兆伟, 张健, 等. 基于粒子滤波的通信保障航天器相对导航方法[J]. 哈尔滨工业大学学报, 2012, 44(11): 27-30, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201211006.htm

    LIU Xue-kui, SUN Zhao-wei, ZHANG Jian, et al. Relative navigation method of communication supporting space-craft base-on particle filter[J]. Journal of Harbin Institute of Technology, 2012, 44(11): 27-30, 80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201211006.htm
    [4] 李轶, 张善从. 基于视线测量的航天器相对导航滤波方法研究[J]. 仪器仪表学报, 2012, 33(6): 1201-1209. doi: 10.3969/j.issn.0254-3087.2012.06.001

    LI Yi, ZHANG Shan-cong. Relative navigation filter algorithm for spacecrafts based on line-of-sight[J]. Chinese Journal of Scientific Instrument, 2012, 33(6): 1201-1209. (in Chinese) doi: 10.3969/j.issn.0254-3087.2012.06.001
    [5] 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32(6): 1084-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201106016.htm

    WANG Kai, CHEN Tong, XU Shi-jie. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1084-1091. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201106016.htm
    [6] LEE J Y, KIM H S, CHOI K H, et al. Design of adaptive filtering algorithm for relative navigation[C]∥IAENG. Proceedings of the World Congress on Engineering and Computer Science 2013. Hong Kong: Newswood Limited, 2013: 892-896.
    [7] D'AMICO S, LARSSON R. Navigation and control of the PRISMA formation: in-orbit experience[J]. Journal of Mechanics Engineering and Automation, 2012, 2(5): 312-320.
    [8] CHAMON L F O, LOPES C G. Combination of adaptive filters for relative navigation[C]∥EURASIP. 19th European Signal Processing Conference. Warsaw: EURASIP, 2011: 1771-1775.
    [9] RENGA A, GRASSI M, TANCREDI U. Relative navigation in LEO by carrier-phase differential GPS with intersatellite ranging augmentation[J]. International Journal of Aerospace Engineering, 2013, 2013: 1-11.
    [10] LEISHMAN R C. A vision-based relative navigation approach for autonomous multirotor aircraft[D]. Provo: Brigham Young University, 2013.
    [11] LI R, JIAO Y Y, LI Y, et al. Simulation platform for relative navigation using GPS carrier phase measurements for satellite formation flying missions[C]∥IGNSS. International Global Navigation Satellite Systems Society IGNSS Symposium 2011. Tweed Heads: IGNSS, 2011: 1-13.
    [12] 张共愿, 程咏梅, 程承, 等. 基于相对导航的多平台INS误差联合修正方法[J]. 航空学报, 2011, 32(2): 271-280. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201102012.htm

    ZHANG Gong-yuan, CHENG Yong-mei, CHENG Cheng, et al. A joint correcting method of multi-platform INS error based on relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 271-280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201102012.htm
    [13] 邓泓, 仲惟超, 孙兆伟, 等. 拦截卫星相对导航算法研究[J]. 哈尔滨工业大学学报, 2013, 45(2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201302014.htm

    DENG Hong, ZHONG Wei-chao, SUN Zhao-wei, et al. Relative navigation research of intercepting satellite[J]. Journal of Harbin Institute of Technology, 2013, 45(2): 83-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201302014.htm
    [14] 吕纪远, 周军, 刘莹莹. 自适应滤波在空间机动目标相对导航中的应用[J]. 西北工业大学学报, 2011, 29(4): 564-568. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201104013.htm

    LU Ji-yuan, ZHOU Jun, LIU Ying-ying. Applying auto-adaptation filter to tracking of maneuvering target in special relative navigation[J]. Journal of Northwestern Polytechnical University, 2011, 29(4): 564-568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201104013.htm
    [15] 王小刚, 郭继峰, 崔乃刚. 一种鲁棒Sigma-point滤波算法及其在相对导航中的应用[J]. 航空学报, 2010, 31(5): 1024-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005023.htm

    WANG Xiao-gang, GUO Ji-feng, CUI Nai-gang. Robust Sigma-point filtering and its application to relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 1024-1029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005023.htm
    [16] 刘承奇, 贾英宏, 徐世杰. 四种卡尔曼滤波器在仅视线测量相对导航中的性能比较[J]. 空间控制技术与应用, 2014, 40(1): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201401013.htm

    LIU Cheng-qi, JIA Ying-hong, XU Shi-jie. Comparison of four different Kalman filters for relative navigation based on line-of-sight-only measurement[J]. Aerospace Control and Application, 2014, 40(1): 52-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201401013.htm
    [17] 刘勇, 徐鹏, 徐世杰. 航天器自主交会对接的视觉相对导航方法[J]. 中国空间科学技术, 2013, 33(6): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201306006.htm

    LIU Yong, XU Peng, XU Shi-jie. Vision-based relative navigation for rendezvous and docking of spacecraft[J]. Chinese Space Science and Technology, 2013, 33(6): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201306006.htm
    [18] WANG Da. Cooperative V2X relative navigation using tight-integration of DGPS and V2X UWB range and simulated bearing[D]. Calgary: University of Calgary, 2015.
    [19] 王秀森, 周红进, 张尚悦. 基于GPS伪距单差的舰船相对导航方法[J]. 中国惯性技术学报, 2012, 20(4): 464-467. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201204019.htm

    WANG Xiu-sen, ZHOU Hong-jin, ZHANG Shang-yue. Relative navigation between vessels based on GPS single difference[J]. Journal of Chinese Inertial Technology, 2012, 20(4): 464-467. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201204019.htm
    [20] 宋伟, 周红进, 王秀森. Kalman滤波应用于GPS相对导航信息解算方法[J]. 舰船科学技术, 2013, 35(6): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201306018.htm

    SONG Wei, ZHOU Hong-jin, WANG Xiu-sen. Research on relative navigation method based on GPS using Kalman filter[J]. Ship Science and Technology, 2013, 35(6): 65-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201306018.htm
  • 加载中
图(27) / 表(3)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  85
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 刊出日期:  2016-02-25

目录

    /

    返回文章
    返回