留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于井群原理的起重船压载水系统仿真

董智惠 韩端锋 林晓杰 袁利毫 昝英飞

董智惠, 韩端锋, 林晓杰, 袁利毫, 昝英飞. 基于井群原理的起重船压载水系统仿真[J]. 交通运输工程学报, 2016, 16(2): 82-89. doi: 10.19818/j.cnki.1671-1637.2016.02.010
引用本文: 董智惠, 韩端锋, 林晓杰, 袁利毫, 昝英飞. 基于井群原理的起重船压载水系统仿真[J]. 交通运输工程学报, 2016, 16(2): 82-89. doi: 10.19818/j.cnki.1671-1637.2016.02.010
DONG Zhi-hui, HAN Duan-feng, LIN Xiao-jie, YUAN Li-hao, ZAN Ying-fei. Simulation of crane ship's ballast system based on well cluster theory[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 82-89. doi: 10.19818/j.cnki.1671-1637.2016.02.010
Citation: DONG Zhi-hui, HAN Duan-feng, LIN Xiao-jie, YUAN Li-hao, ZAN Ying-fei. Simulation of crane ship's ballast system based on well cluster theory[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 82-89. doi: 10.19818/j.cnki.1671-1637.2016.02.010

基于井群原理的起重船压载水系统仿真

doi: 10.19818/j.cnki.1671-1637.2016.02.010
基金项目: 

国家科技重大专项课题 2011ZX05027

详细信息
    作者简介:

    董智惠(1985-), 女, 黑龙江尚志人, 哈尔滨工程大学工学博士研究生, 从事海洋工程作业模拟器实时仿真研究

    韩端锋(1966-), 男, 黑龙江双鸭山人, 哈尔滨工程大学教授, 工学博士

  • 中图分类号: U664.8

Simulation of crane ship's ballast system based on well cluster theory

More Information
  • 摘要: 建立了起重船压载水系统的虚拟井群系统和管网结构模型, 分析了节点水头和流量的计算方法, 研究了管路压降损失的计算方程, 考虑了阀门开度和泵节点等特殊节点。建立了管网系统的流量-水头矩阵方程, 采用矩阵分割和迭代方法求解节点的水头。为了提高矩阵方程计算效率, 得到了实际流通路径的预流通方案。以某起重船压载水系统为原型, 建立了仿真系统, 实现了人机交互操作控制管网, 并实时监控系统工作状态。设置舱室阀门开度分别为1.0、0.5的工况, 进行了压载泵输出流量为3 500 m3·h-1, 输入到8P、8S、6P、6S、4P、4S六个压载水舱的仿真试验。仿真结果表明: 阀门开度均为1.0时, 各压载水舱流量分别为603.73、603.73、605.88、605.88、540.39、540.39 m3·h-1, 流量和管路长度成反比, 将8P、8S舱室阀门开度调整为0.5, 6个舱室流量分别为484.87、484.87、670.19、670.19、594.94、594.94 m3·h-1, 因此, 流量对阀门开度较敏感, 并且阀门开度对相邻节点的流量影响较大, 这与实际压载水系统具有较高的吻合度; 求解算法收敛速度快, 经过5次循环后, 流量计算值趋于稳定解。

     

  • 图  1  井群供水管网

    Figure  1.  Water supply pipe network of well cluster

    图  2  局部管网

    Figure  2.  Partial pipe network

    图  3  包含泵的管路

    Figure  3.  Pipe network with pump

    图  4  模型求解流程

    Figure  4.  Calculation flow of model

    图  5  FWD界面

    Figure  5.  FWD interface

    图  6  AFT界面

    Figure  6.  AFT interface

    图  7  工况1的流量曲线

    Figure  7.  Flow curve in case 1

    图  8  工况2的流量曲线

    Figure  8.  Flow curve in case 2

    图  9  工况3的流量曲线

    Figure  9.  Flow curve in case 3

    图  10  工况4的流量曲线

    Figure  10.  Flow curve in case 4

    图  11  工况5的流量曲线

    Figure  11.  Flow curve in case 5

    图  12  压载水舱8P的流量曲线

    Figure  12.  Flow curve of ballast tank 8P

    图  13  压载水舱8S的流量曲线

    Figure  13.  Flow curve of ballast tank 8S

    图  14  压载水舱6P的流量曲线

    Figure  14.  Flow curve of ballast tank 6P

    图  15  压载水舱6S的流量曲线

    Figure  15.  Flow curve of ballast tank 6S

    图  16  压载水舱4P的流量曲线

    Figure  16.  Flow curve of ballast tank 4P

    图  17  压载水舱4S的流量曲线

    Figure  17.  Flow curve of ballast tank 4S

    表  1  仿真工况

    Table  1.   Simulation cases

    下载: 导出CSV
  • [1] YUN S N, HAM Y B, TANAKA Y, et al. New circuit strategy of the variable ballast system for a deep sea submersible[C]//IEEE. 2015 International Conference on Fluid Power and Mechatronics. New York: IEEE, 2015: 514-517.
    [2] XIAO Jian-wei, WANG Kai-po, WANG Ya-nan, et al. Studies on loading experiment scheme for heavy duty floating crane[J]. Ship Engineering, 2011, 33(5): 83-85.
    [3] WILSON W, CHANG P, VEROSTO S, et al. Computational and experimental analysis of ballast water exchange[J]. Naval Engineers Journal, 2006, 118(3): 25-36. doi: 10.1111/j.1559-3584.2006.tb00460.x
    [4] ARMSTRONG G. Ballast system design for flow-through exchange of ballast water[J]. International Maritime Technology, 1997, 109(3): 257-269.
    [5] QIU Zhong-liang. Design and research on a variable ballast system for deep-sea manned submersibles[J]. Journal of Marine Science and Application, 2008, 7(4): 255-260. doi: 10.1007/s11804-008-7092-y
    [6] GOMES C F S. Using MCDA methods THOR in an application for outranking the ballast water management options[J]. Pesquisa Operacional, 2005, 25(1): 11-28. doi: 10.1590/S0101-74382005000100002
    [7] 张显库, 金一丞, 尹勇. 半潜船航海模拟器的压载水系统仿真[J]. 中国航海, 2008, 31(3): 230-235. doi: 10.3969/j.issn.1000-4653.2008.03.007

    ZHANG Xian-ku, JIN Yi-cheng, YlN Yong. Simulation of ballast water system in the navigation simulator for semisubmersible heavy lift vessels[J]. Navigation of China, 2008, 31(3): 230-235. (in Chinese) doi: 10.3969/j.issn.1000-4653.2008.03.007
    [8] 肖民, 乔红宇, 姚寿广. 船舶压载水系统的有限元仿真与监控界面设计[J]. 哈尔滨工程大学学报, 2008, 29(8): 862-866. doi: 10.3969/j.issn.1006-7043.2008.08.018

    XIAO Min, QIAO Hong-yu, YAO Shou-guang. FEM simulation of ballast water system in ships and a design of monitoring and control interface[J]. Journa of Harbin Engineering University, 2008, 29(8): 862-866. (in Chinese) doi: 10.3969/j.issn.1006-7043.2008.08.018
    [9] 吕治慧. LNG船液货装卸模拟器中稳性计算及仿真[D]. 大连: 大连海事大学, 2015.

    LU Zhi-hui. Stability calculation and simulation for liquid cargo handling simulator of LNG carrier[D]. Dalian: Dalian Maritime University, 2015. (in Chinese)
    [10] 白青壮, 杨国豪, 徐轶群. 半潜船滚装重大件压载水调节可视化研究[J]. 集美大学学报: 自然科学版, 2013, 18(2): 119-123. doi: 10.3969/j.issn.1007-7405.2013.02.007

    BAI Qing-zhuang, YANG Guo-hao, XU Yi-qun. Research on the visual simulation of ballast water adjustment for a semi-submerged heavy lift vessel in rolling based on vega prime[J]. Journal of Jimei University: Natural Science, 2013, 18(2): 119-123. (in Chinese) doi: 10.3969/j.issn.1007-7405.2013.02.007
    [11] 周根明, 吴如坤. 维修母船最稳要求下的配载方法分析[J]. 河南科技, 2015, 5: 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKJ201510015.htm

    ZHOU Gen-ming, WU Ru-kun. Research on the loading method about mother ship maintenance with stability[J]. Journal of Henan Science and Technology, 2015, 5: 40-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNKJ201510015.htm
    [12] ARVIND K. Impact of passive heave compensator on offshore lifting[J]. Journal of Shipping and Ocean Engineering, 2015, 5(4): 166-180.
    [13] NAM B W, HONG S Y, KIM Y S, et al. Effects of passive and active heave compensators on deepwater lifting operation[J]. International Journal of Offshore and Polar Engineering, 2013, 23(1): 33-37.
    [14] TANIDA K, SUZUKI T, YASUDA T, et al. Active heave compensator for heavy hanging body suspended from offshore floating unit[J]. Journal of the Japan Society of Naval Architectsand Ocean Engineers, 1994, 1994(176): 145-152.
    [15] 乔红宇, 杨泽宇. 船舶压载水监控系统设计[J]. 中国航海, 2010, 33(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201002009.htm

    QIAO Hong-yu, YANG Ze-yu. Design of marine ballast monitor and control system[J]. Navigation of China, 2010, 33(2): 23-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201002009.htm
    [16] 吴杰长, 庞之洋, 梁述海. 基于仿真支撑系统和组态软件平台的舰船轮机仿真训练模拟器研究[J]. 系统仿真学报, 2004, 16(3): 605-607. doi: 10.3969/j.issn.1004-731X.2004.03.062

    WU Jie-chang, PANG Zhi-yang, LIANG Shu-hai. Research on the development of ship's propulsion plant simulator based on simulation support software and configuration software[J]. Journal of System Simulation, 2004, 16(3): 605-607. (in Chinese) doi: 10.3969/j.issn.1004-731X.2004.03.062
    [17] 刘志春, 朱永全. 任意排列的承压-潜水完整型干扰井群计算理论及应用[J]. 岩石力学与工程学报, 2004, 23(19): 3359-3364. doi: 10.3321/j.issn:1000-6915.2004.19.025

    LIU Zhi-chun, ZHU Yong-quan. Calculation theory of integrated and arbitrarily arranged interferential wells bearing pressure under water and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3359-3364. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.19.025
    [18] 刘建续, 王俊锋, 王旭. 井群树状管网输水水力调节方式研究[J]. 地下水, 2012, 34(2): 100-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201202041.htm

    LIU Jian-xu, WANG Jun-feng, WANG Xu. Well field research of tree pipe network hydraulic regulation of water[J]. Ground Water, 2012, 34(2): 100-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201202041.htm
    [19] 王中, 陈卓. 输水管道水力损失的计算及其影响因素分析[J]. 土木建筑工程信息技术, 2012, 4(3): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TMJZ201203007.htm

    WANG Zhong, CHEN Zhuo. The aqueduct hydraulic loss calculation and its influencing factor analysis[J]. Journal of Information Technology in Civil Engineering and Architecture, 2012, 4(3): 19-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMJZ201203007.htm
    [20] 刘平昌. 船闸阀门后廊道突扩体型阻力系数研究[J]. 重庆交通学院学报, 1998, 17(3): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT803.004.htm

    LIU Ping-chang. Study on resistance coefficient of the culvert sudden enlargement type behind the valve in ship lock[J]. Journal of Chongqing Jiaotong Institute, 1998, 17(3): 25-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT803.004.htm
    [21] 刘炜慧, 贾惠春, 凌静. "海洋石油201"压载系统分析[J]. 船海工程, 2013, 42(2): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201302010.htm

    LIU Wei-hui, JIA Hui-chun, LING Jing. Analysis of ballast system for "HAI YANG SHI YOU 201"[J]. Ship and Ocean Engineering, 2013, 42(2): 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201302010.htm
    [22] 许文兵. 深水铺管起重船"海洋石油201"研制[J]. 中国造船, 2014, 55(1): 208-215. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201401027.htm

    XU Wen-bing. Development of deepwater pipelay crane vessel "HAI YANG SHI YOU 201"[J]. Shipbuilding of China, 2014, 55(1): 208-215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201401027.htm
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  109
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-05
  • 刊出日期:  2016-04-25

目录

    /

    返回文章
    返回