留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型舱室火灾智能识别的贝叶斯网络模型

谢田华 林焰 杨祖耀 金良安

谢田华, 林焰, 杨祖耀, 金良安. 典型舱室火灾智能识别的贝叶斯网络模型[J]. 交通运输工程学报, 2016, 16(2): 90-99. doi: 10.19818/j.cnki.1671-1637.2016.02.011
引用本文: 谢田华, 林焰, 杨祖耀, 金良安. 典型舱室火灾智能识别的贝叶斯网络模型[J]. 交通运输工程学报, 2016, 16(2): 90-99. doi: 10.19818/j.cnki.1671-1637.2016.02.011
XIE Tian-hua, LIN Yan, YANG Zu-yao, JIN Liang-an. Bayesian network model for intelligent recognition of typical compartment fire[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 90-99. doi: 10.19818/j.cnki.1671-1637.2016.02.011
Citation: XIE Tian-hua, LIN Yan, YANG Zu-yao, JIN Liang-an. Bayesian network model for intelligent recognition of typical compartment fire[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 90-99. doi: 10.19818/j.cnki.1671-1637.2016.02.011

典型舱室火灾智能识别的贝叶斯网络模型

doi: 10.19818/j.cnki.1671-1637.2016.02.011
基金项目: 

“十二五”国防预研项目 4010403010208

武器装备军内科研重点项目 2014HJ0030

详细信息
    作者简介:

    谢田华(1976-), 男, 辽宁丹东人, 海军大连舰艇学院副教授, 大连理工大学工学博士研究生, 从事舰船安全保障与防护研究

    林焰(1963-), 男, 福建福州人, 大连理工大学教授, 工学博士

  • 中图分类号: U661.7

Bayesian network model for intelligent recognition of typical compartment fire

More Information
  • 摘要: 基于先进传感器, 建立了火灾大小和类型智能识别的贝叶斯网络模型, 上层温度、下层温度、CO浓度、CO2浓度、O2浓度和遮光度等6个火灾特征参数为识别模型的输入变量, 火灾大小和类型为输出变量, 并推导了输入变量与输出变量之间的关系。分别在住舱、指挥室、机舱和机库等4种典型舱室模拟了床垫火、电缆火、油池火和喷射火等4种火源, 利用CFAST软件得到了2 880组模拟样本数据, 对模型参数进行了训练, 并根据全尺度火灾试验数据对训练后的识别模型进行了验证。验证结果表明: 在火灾传感器数据完整时, 对小火、中火和大火状态的平均识别正确率分别为88.0%、95.0%、85.7%, 对固体火和油料火的平均识别正确率分别为90.2%、81.5%;在火灾损害严重或武器打击致使单个传感器失效的情况下, 对火灾大小和类型的平均识别正确率分别为82.4%、82.7%, 比火灾传感器数据完整时分别降低8.1%、2.8%。可见, 识别模型具有良好的识别能力和鲁棒性, 可应用于舰船损管监控系统, 为指挥员选择最有效的灭火方法和战术提供实时的决策支持。

     

  • 图  1  模型建立过程

    Figure  1.  Establishment process of model

    图  2  模型拓扑结构

    Figure  2.  Topology structure of model

    图  3  电缆火的热释放速率曲线

    Figure  3.  Heat release rate curve of cable fire

    图  4  床垫火的热释放速率曲线

    Figure  4.  Heat release rate curve of mattress fire

    图  5  油池火的热释放速率曲线

    Figure  5.  Heat release rate curve of pool fire

    图  6  喷射火的热释放速率曲线

    Figure  6.  Heat release rate curve of spill fire

    图  7  小火识别概率

    Figure  7.  Recognition probabilities of small fire

    图  8  中火识别概率

    Figure  8.  Recognition probabilities of medium fire

    图  9  大火识别概率

    Figure  9.  Recognition probabilities of large fire

    图  10  火灾大小的识别结果

    Figure  10.  Recognition results of fire sizes

    图  11  固体火识别概率

    Figure  11.  Recognition probabilities of solid fire

    图  12  油料火识别概率

    Figure  12.  Recognition probabilities of fuel oil fire

    图  13  火灾类型的识别结果

    Figure  13.  Recognition results of fire categories

    图  14  图 14小火识别概率验证结果

    Figure  14.  Verification results of recognition probabilities of small fire

    图  15  中火识别概率验证结果

    Figure  15.  Verification results of recognition probabilities of medium fire

    图  16  大火识别概率验证结果

    Figure  16.  Verification results of recognition probabilities of large fire

    图  17  火灾大小验证结果

    Figure  17.  Verification results of fire sizes

    图  18  固体火识别概率验证结果

    Figure  18.  Verification results of recognition probabilities of solid fire

    图  19  油料火识别概率验证结果

    Figure  19.  Verification results of recognition probabilities of fuel oil fire

    图  20  火灾类型的验证结果

    Figure  20.  Verification results of fire categories

    表  1  模型输入变量与输出变量

    Table  1.   Input and output variables of model

    下载: 导出CSV

    表  2  模拟舱室

    Table  2.   Simulated compartments

    下载: 导出CSV

    表  3  火源的比较

    Table  3.   Comparison of fire sources

    下载: 导出CSV

    表  4  模拟样本数据编号

    Table  4.   Numbers of simulated sample data

    下载: 导出CSV

    表  5  不同火灾大小的识别率

    Table  5.   Recognition rates of different fire sizes

    下载: 导出CSV

    表  6  不同火灾类型的识别率

    Table  6.   Recognition rates of different fire categories

    下载: 导出CSV

    表  7  火灾类型和大小的识别正确率

    Table  7.   Recognition accuracy rates of fire sizes and categories

    下载: 导出CSV

    表  8  传感器失效时的识别正确率

    Table  8.   Recognition accuracy rates with failure sensor

    下载: 导出CSV

    表  9  试验验证数据编号

    Table  9.   Numbers of experimental validated data

    下载: 导出CSV

    表  10  验证试验的识别正确率

    Table  10.   Recognition accuracy rates of verification test

    下载: 导出CSV

    表  11  传感器失效时验证试验的识别正确率

    Table  11.   Recognition accuracy rates of verification test with failure sensor

    下载: 导出CSV
  • [1] LEBLANC D. Fire environments typical of navy ships[D]. London: Worcester Polytechnic Institute, 1998.
    [2] CALABRESE F, CORALLO A, MARGHERITA A, et al. A knowledge-based decision support system for shipboard damage control[J]. Expert Systems with Applications, 2012, 39(9): 8204-8211. doi: 10.1016/j.eswa.2012.01.146
    [3] OWRUTSKY J C, STEINHURST D A, MINOR C P, et al. Long wavelength video detection of fire in ship compartments[J]. Fire Safety Journal, 2006, 41(4): 315-320. doi: 10.1016/j.firesaf.2005.11.011
    [4] GOTTUK D T, LYNCH J A, ROSE-PEHRSSON S L, et al. Video image fire detection for shipboard use[J]. Fire Safety Journal, 2006, 41(4): 321-326. doi: 10.1016/j.firesaf.2005.12.007
    [5] ROSE-PEHRSSON S L, SHAFFER R E, HART S J, et al. Multi-criteria fire detection systems using a probabilistic neural network[J]. Sensors and Actuators B: Chemical, 2000, 69(3): 325-335. doi: 10.1016/S0925-4005(00)00481-0
    [6] KUO H C, CHANG H K. A real-time shipboard fire-detection system based on grey-fuzzy algorithms[J]. Fire Safety Journal, 2003, 38(4): 341-363. doi: 10.1016/S0379-7112(02)00088-7
    [7] ROSE-PEHRSSON S L, HART S J, STREET T T, et al. Early warning fire detection system using a probabilistic neural network[J]. Fire Technology, 2003, 39(2): 147-171. doi: 10.1023/A:1024260130050
    [8] WANG S J, JENG D L, TSAI M T. Early fire detection method in video for vessels[J]. Journal of Systems and Software, 2009, 82(4): 656-667. doi: 10.1016/j.jss.2008.09.025
    [9] WILKINS D C, SNIEZEK J A, TETEM PA, et al. The DC-SCS supervisory control system for ship damage control: volume 1—design overview[R]. Washington DC: Naval Research Laboratory, 2001.
    [10] ROSE-PEHRSSON S L, MINOR C P, STEINHURST D A, et al. Volume sensor for damage assessment and situational awareness[J]. Fire Safety Journal, 2006, 41(4): 301-310. doi: 10.1016/j.firesaf.2005.12.005
    [11] MINOR C P, JOHNSON K J, ROSE-PEHRSSON S L. A full-scale prototype multisensor system for fire detection and situational awareness[C]//SPIE. Proceedings of SPIE 6571, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications. Bellingham: SPIE, 2007: 11-12.
    [12] 李卡麟. 基于二叉树的LS-WSVM模型在早期火灾分类上的研究[D]. 汕头: 汕头大学, 2010.

    LI Ka-lin. Research on LS-WSVM based on binary tree in early fire multi-class classification[D]. Shantou: Shantou University, 2010. (in Chinese)
    [13] 庄哲民, 李卡麟, 张新蜂, 等. 用于早期火灾分类的非线性决策树支持向量机[J]. 火灾科学, 2009, 18(4): 206-211. doi: 10.3969/j.issn.1004-5309.2009.04.004

    ZHUANG Zhe-min, LI Ka-lin, ZHANG Xin-feng, et al. Nonlinear decision tree support vector machine for early fire classification[J]. Fire Safety Science, 2009, 18(4): 206-211. (in Chinese) doi: 10.3969/j.issn.1004-5309.2009.04.004
    [14] 孙福志, 于军琪, 杨柳. 火灾识别中RS-SVM模型的应用[J]. 计算机工程与应用, 2010, 46(3): 198-200. doi: 10.3778/j.issn.1002-8331.2010.03.061

    SUN Fu-zhi, YU Jun-qi, YANG Liu. Application of RS-SVM model for fire identification[J]. Computer Engineering and Application, 2010, 46(3): 198-200. (in Chinese) doi: 10.3778/j.issn.1002-8331.2010.03.061
    [15] 赵亚琴. 基于模糊神经网络的火灾识别算法[J]. 计算机仿真, 2015, 32(2): 369-373. doi: 10.3969/j.issn.1006-9348.2015.02.080

    ZHAO Ya-qin. Forest fire recognition algorithm based on fuzzy neural network[J]. Computer Simulation, 2015, 32(2): 369-373. (in Chinese) doi: 10.3969/j.issn.1006-9348.2015.02.080
    [16] KIM J H, LATTIMER B Y. Real-time probabilistic classification of fire and smoke using thermalimagery for intelligent firefighting robot[J]. Fire Safety Journal, 2015, 72: 40-49. doi: 10.1016/j.firesaf.2015.02.007
    [17] AKHTAR M J, UTNE I B. Human fatigue's effect on the risk of maritime groundings—a Bayesian network modeling approach[J]. Safety Science, 2014, 62: 427-440. doi: 10.1016/j.ssci.2013.10.002
    [18] GROIS E, WILKINS D C, EARMAN I, et al. The DC-SCS supervisory control system for ship damage control: volume4—intelligent reasoning[R]. Washington DC: Naval Research Laboratory, 2001.
    [19] BAKSH A A, KHAN F, GADAG V, et al. Network based approach for predictive accident modelling[J]. Safety Science, 2015, 80: 274-287. doi: 10.1016/j.ssci.2015.08.003
    [20] 刘志军, 纪卓尚, 林焰. 基于贝叶斯网络的船舶机舱火灾风险分析研究[J]. 中国造船, 2010, 51(3): 199-205. doi: 10.3969/j.issn.1000-4882.2010.03.024

    LIU Zhi-jun, JI Zhuo-shang, LIN Yan. Fire risk analysis in ship engine room based on Bayesian networks[J]. Shipbuilding of China, 2010, 51(3): 199-205. (in Chinese) doi: 10.3969/j.issn.1000-4882.2010.03.024
    [21] WILLIAMS F W, SCHEFFEY J L, HILL S A, et al. Postflashover fires in shipboard compartments aboard ex-USS Shadwell: phase V—fire dynamics[R]. Washington DC: Naval Research Laboratory, 1999.
    [22] WILLIAMS F W, TATEM P A, XUAN N, et al. Results of1998DC-ARM/ISFE demonstration tests[R]. Washington DC: Naval Research Laboratory, 2000.
    [23] HOOVER J B, WHITEHURST C L, CHANG E B, et al. Final report on fire performance of shipboard electronic space materials[R]. Washington DC: Naval Research Laboratory, 2006.
    [24] HOOVER J B, BAILEY J L, WILLAUER H D, et al. Evaluation of submarine hydraulic system explosion and fire hazards[R]. Washington DC: Naval Research Laboratory, 2005.
    [25] WONG J T, GOTTUK D T, ROSE-PETHRSSON S L, et al. Results of multi-criteria fire detection system tests[R]. Washington DC: Naval Research Laboratory, 2000.
  • 加载中
图(20) / 表(11)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  73
  • PDF下载量:  940
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 刊出日期:  2016-04-25

目录

    /

    返回文章
    返回