留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

终端区空域结构调整对进场交通流的影响

张洪海 廖志华 张启钱 张翔宇

张洪海, 廖志华, 张启钱, 张翔宇. 终端区空域结构调整对进场交通流的影响[J]. 交通运输工程学报, 2016, 16(2): 100-108. doi: 10.19818/j.cnki.1671-1637.2016.02.012
引用本文: 张洪海, 廖志华, 张启钱, 张翔宇. 终端区空域结构调整对进场交通流的影响[J]. 交通运输工程学报, 2016, 16(2): 100-108. doi: 10.19818/j.cnki.1671-1637.2016.02.012
ZHANG Hong-hai, LIAO Zhi-hua, ZHANG Qi-qian, ZHANG Xiang-yu. Impact of adjusting airspace structure on arrival traffic flow in terminal area[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 100-108. doi: 10.19818/j.cnki.1671-1637.2016.02.012
Citation: ZHANG Hong-hai, LIAO Zhi-hua, ZHANG Qi-qian, ZHANG Xiang-yu. Impact of adjusting airspace structure on arrival traffic flow in terminal area[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 100-108. doi: 10.19818/j.cnki.1671-1637.2016.02.012

终端区空域结构调整对进场交通流的影响

doi: 10.19818/j.cnki.1671-1637.2016.02.012
基金项目: 

国家自然科学基金项目 61104159

江苏省自然科学基金项目 BK20131366

详细信息
    作者简介:

    张洪海(1979-), 男, 山东鄄城人, 南京航空航天大学副教授, 工学博士, 从事复杂空中交通系统研究

  • 中图分类号: V355

Impact of adjusting airspace structure on arrival traffic flow in terminal area

More Information
    Author Bio:

    ZHANG Hong-hai(1979-), male, associate professor, PhD, +86-25-52112669, zhh0913@163.com

  • 摘要: 根据终端区空域运行规则, 采用网络理论建立了终端区空域网络模型, 基于终端区航空器微观行为建立了空中交通流跟驰模型和等待模型, 基于NetLogo仿真平台进行了仿真试验, 分析了不同入度分布的空域结构对交通流的影响。仿真结果表明: 当密度小于等于0.075架次·km-1, 速度大于等于0.04 km·s-1时, 交通流处于自由相; 当密度为0.075~0.200架次·km-1且速度大于等于0.04 km·s-1时, 交通流处于畅行相; 当密度大于0.200架次·km-1, 小于最大密度时, 交通流处于拥塞相; 随着航班波作用的减弱, 交通流进入反向畅行相, 之后进入反向自由相; 当进场交通流分布一定, 入度值依次为2、3、1时, 交通流速度小, 密度大, 拥塞消散最慢, 入度值依次为3、2、1时, 交通流速度大, 密度小, 拥塞消散最快。可知, 增大空域网络上游关键节点的入度, 使进场交通流提前完成汇聚, 有利于交通流快速运行, 增大交通流量; 减小空域网络下游关键节点的入度, 有利于交通流在达到拥塞相后快速完成消散。

     

  • 图  1  仿真逻辑流程

    Figure  1.  Simulation logic flowchart

    图  2  仿真界面

    Figure  2.  Simulation interface

    图  3  三类空域结构

    Figure  3.  Three kinds of airspace structures

    图  4  不同空域结构下交通流参数变化曲线

    Figure  4.  Variation curves of traffic flow parameters in different airspace structures

    图  5  结构1下的速度-密度关系

    Figure  5.  Velocity-density relationship in structure 1

    图  6  不同空域结构下的速度-密度关系

    Figure  6.  Velocity-density relationships in different airspace structures

    表  1  空域结构关键节点的入度

    Table  1.   In-degrees of key nodes in airspace structures

    下载: 导出CSV
  • [1] CLARKE J P B, SOLAK S, REN Li-ling, et al. Determining stochastic airspace capacity for air traffic flow management[J]. Transportation Science, 2013, 47(4): 542-559. doi: 10.1287/trsc.1120.0440
    [2] JANIC M. Modelling the capacity of closely-spaced parallel runways using innovative approach procedures[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(6): 704-730. doi: 10.1016/j.trc.2008.01.003
    [3] DELL'OLMO P, LULLI G. A dynamic programming approach for the airport capacity allocation problem[J]. IMA Journal of Management Mathematics, 2003, 14(3): 235-249. doi: 10.1093/imaman/14.3.235
    [4] ROMANO E, SANTILLO L C, ZOPPOLI P. A static algorithm to solve the air traffic sequencing problem[J]. WSEAS Transactions on Systems, 2008, 7(6): 682-695.
    [5] NIKOLERIS T, HANSEN M. Queueing models for trajectorybased aircraft operations[J]. Transportation Science, 2012, 46(4): 501-511. doi: 10.1287/trsc.1120.0411
    [6] MIHETEC T, STEINER S, ODIĆ D. Utilization of flexible airspace structure in flight efficiency optimization[J]. PROMETTraffic and Transportation, 2013, 25(2): 109-118.
    [7] KULKARNI S, GANESAN R, SHERRY L. Dynamic airspace configuration using approximate dynamic programming: intelligence-based paradigm[J]. Transportation Research Record, 2012(2266): 31-37.
    [8] SAVAI M P, LI Jin-hua, WANG Tong, et al. An algorithm for adaptable dynamic airspace configuration[C]//AIAA. 10th AIAA Aviation Technology, Integration, and Operations(ATIO)Conference. Reston: AIAA, 2010: 1-10.
    [9] TANG Jiang-jun, ALAM S, LOKAN C, et al. A multiobjective approach for dynamic airspace sectorization using agent based and geometric models[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 89-121. doi: 10.1016/j.trc.2011.08.008
    [10] DE ALBUQUERQUE FILHO E A F. Analysis of airspace traffic structure and air traffic control techniques[D]. Cambridge: Massachusetts Institute of Technology, 2012.
    [11] 张明, 韩松臣. 基于空域灵活使用的终端空域规划设计方法[J]. 交通信息与安全, 2013, 31(5): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201305002.htm

    ZHANG Ming, HAN Song-chen. Method of terminal airspace planning based on flexible use of airspace[J]. Journal of Transport Information and Safety, 2013, 31(5): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201305002.htm
    [12] 孙晓阳, 胡明华, 张洪海. 空域和流量协同管理建模与仿真[J]. 交通运输工程学报, 2010, 10(1): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201001016.htm

    SUN Xiao-yang, HU Ming-hua, ZHANG Hong-hai. Modeling and simulation of collaborative management for airspace and traffic flow[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 72-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201001016.htm
    [13] 陈星. 动态空域飞行流量自适应调配技术[D]. 南京: 南京航空航天大学, 2009.

    CHEN Xing. Auto-adapted adjusting technology of flight flow in the dynamic airspace[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [14] 陈欣, 陆迅, 朱金福. 枢纽机场空侧容量利用和流量分配优化模型[J]. 南京航空航天大学学报, 2007, 39(5): 680-684. doi: 10.3969/j.issn.1005-2615.2007.05.026

    CHEN Xin, LU Xun, ZHU Jin-fu. Optimization model of hub-airport airside capacity utilization and flow allocation[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2007, 39(5): 680-684. (in Chinese) doi: 10.3969/j.issn.1005-2615.2007.05.026
    [15] 刘强, 白存儒, 林键, 等. 空中交通流线性二次型最优控制[J]. 交通与计算机, 2008, 26(6): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200806033.htm

    LIU Qiang, BAI Cun-ru, LIN Jian, et al. Linear-quadratic optimal control of air traffic flow[J]. Computer and Communications, 2008, 26(6): 116-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200806033.htm
    [16] 程朋, 崔德光, 吴澄. 空中交通短期流量管理的动态网络流模型[J]. 清华大学学报: 自然科学版, 2000, 40(11): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200011029.htm

    CHENG Peng, CUI De-guang, WU Cheng. Dynamic network flow model for short-term air traffic flow management[J]. Journal of Tsinghua University: Science and Technology, 2000, 40(11): 114-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200011029.htm
    [17] MENON P K, SWERIDUK G D, BILIMORIA K D. New approach for modeling, analysis and control of air traffic flow[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 737-744. doi: 10.2514/1.2556
    [18] BAYEN A M, RAFFARD R L, TOMLIN C J. Adjoint-based control of a new Eulerian network model of air traffic flow[J]. IEEE Transactions on Control Systems Technology, 2006, 14(5): 804-818. doi: 10.1109/TCST.2006.876904
    [19] SUN Deng-feng, STRUB I S, BAYEN A M. Comparison of the performance of four Eulerian network flow models for strategic air traffic management[J]. Networks and Heterogeneous Media, 2007, 2(4): 569-595.
    [20] 王莉莉, 张新瑜, 张兆宁. 空中高速路交通流的跟驰现象及流量模型[J]. 西南交通大学学报, 2012, 47(1): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201201029.htm

    WANG Li-li, ZHANG Xin-yu, ZHANG Zhao-ning. Following phenomenon and air freeway flow model[J]. Journal of Southwest Jiaotong University, 2012, 47(1): 158-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201201029.htm
    [21] 张洪海, 杨磊, 别翌荟, 等. 终端区进场交通流广义跟驰行为与复杂相变分析[J]. 航空学报, 2015, 36(3): 949-961. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503029.htm

    ZHANG Hong-hai, YANG Lei, BIE Yi-hui, et al. Analysis on generalized following behavior and complex phase-transition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 949-961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503029.htm
    [22] ZHANG Hong-hai, XU Yan, YANG Lei, et al. Macroscopic model and simulation analysis of air traffic flow in airport terminal area[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 1-15.
    [23] 张洪海, 许炎, 张哲铭, 等. 终端区空中交通流参数模型与仿真[J]. 交通运输系统工程与信息, 2014, 14(6): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201406009.htm

    ZHANG Hong-hai, XU Yan, ZHANG Zhe-ming, et al. Air traffic flow parameter model and simulation for airport terminal area[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 58-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201406009.htm
    [24] 张洪海, 廖志华, 祝前进. 基于CTM的终端区交通流参数关系研究[J]. 航空计算技术, 2014, 44(4): 1-5, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201404001.htm

    ZHANG Hong-hai, LIAO Zhi-hua, ZHU Qian-jin. Research on relationships among terminal traffic flow parameters based on CTM[J]. Aeronautical Computing Technique, 2014, 44(4): 1-5, 9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201404001.htm
    [25] 许炎, 张洪海, 杨磊, 等. 基于实测数据的终端区空中交通流特性分析[J]. 交通运输系统工程与信息, 2015, 15(1): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201501034.htm

    XU Yan, ZHANG Hong-hai, YANG Lei, et al. Analysis of air traffic flow characteristics in airport terminal area based on observed data[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 205-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201501034.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  44
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-21
  • 刊出日期:  2016-04-25

目录

    /

    返回文章
    返回