留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连接索链弹性模量对防撞系统能量转换的影响

陈徐均 于伟 刘俊谊

陈徐均, 于伟, 刘俊谊. 连接索链弹性模量对防撞系统能量转换的影响[J]. 交通运输工程学报, 2016, 16(3): 46-54. doi: 10.19818/j.cnki.1671-1637.2016.03.006
引用本文: 陈徐均, 于伟, 刘俊谊. 连接索链弹性模量对防撞系统能量转换的影响[J]. 交通运输工程学报, 2016, 16(3): 46-54. doi: 10.19818/j.cnki.1671-1637.2016.03.006
CHEN Xu-jun, YU Wei, LIU Jun-yi. Influence of connecting cable chain's elastic modulus on energy conversion of flexible floating collision-prevention system[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 46-54. doi: 10.19818/j.cnki.1671-1637.2016.03.006
Citation: CHEN Xu-jun, YU Wei, LIU Jun-yi. Influence of connecting cable chain's elastic modulus on energy conversion of flexible floating collision-prevention system[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 46-54. doi: 10.19818/j.cnki.1671-1637.2016.03.006

连接索链弹性模量对防撞系统能量转换的影响

doi: 10.19818/j.cnki.1671-1637.2016.03.006
基金项目: 

国家自然科学基金项目 51379213

国家科技支撑计划项目 2014BAB16B00

详细信息
    作者简介:

    陈徐均(1972-), 男, 江苏南通人, 中国人民解放军理工大学教授, 工学博士, 从事浮式工程结构流固耦合动力学研究

  • 中图分类号: U445.7

Influence of connecting cable chain's elastic modulus on energy conversion of flexible floating collision-prevention system

More Information
  • 摘要: 为了研究船舶与柔性浮式防撞系统碰撞过程中能量的转换关系, 分析了连接索链弹性模量对系统消能作用的影响。在对数值计算模拟条件做出合理假设的前提下, 基于能量守恒原理, 模拟了船舶撞击柔性浮式防撞系统的运动过程, 分析了不同连接索链弹性模量条件下重力锚位移的变化规律。基于位移相似与能量等量原则, 建立了2种数学模型, 比较了数值计算结果与试验结果的差异。分析结果表明: 连接索链弹性模量衡量了其变形程度, 是影响撞击过程中船舶动能转化为弹性势能的重要因素; 在相同条件下, 连接索链的弹性模量越大, 连接索链越不易发生形变, 船舶撞击系统过程中转化为弹性势能的动能就越小, 转化为重力锚摩擦内能的动能就会越大, 各重力锚的锚位移就会越大; 通过数值计算结果与模型试验结果的比较, 模型试验中连接索链的弹性模量为260 GPa比较合适; 在保证连接索链不发生断裂的前提下, 索链的选取直接影响系统走锚的位移, 从而影响柔性浮式防撞系统的拦阻效果。

     

  • 图  1  柔性浮式防撞系统

    Figure  1.  Flexible floating collision-prevention system

    图  2  柔性浮式防撞系统模型试验

    Figure  2.  Model test of flexible floating collision-prevention system

    图  3  连接索链受力

    Figure  3.  Forces of connecting cable chain

    图  4  模型试验的锚位移

    Figure  4.  Moving distances of anchors in model test

    图  5  数值计算与试验得到的锚位移比较

    Figure  5.  Comparison of moving distances of anchors between numerical calculation and experiment

    图  6  不同弹性模量下M5的锚位移

    Figure  6.  Moving distances of M5 under different elastic moduli

    图  7  目标函数值比较

    Figure  7.  Comparison of objective function values

    图  8  数学模型与试验得到的锚位移比较

    Figure  8.  Comparison of moving distances of anchors between mathematical models and experiment

    表  1  试验工况

    Table  1.   Test conditions

    下载: 导出CSV

    表  2  模型参数

    Table  2.   Parameters of models

    下载: 导出CSV

    表  3  连接索链长度

    Table  3.   Lengths of connecting cable chains

    下载: 导出CSV

    表  4  不同弹性模量的锚位移

    Table  4.   Moving distances of anchors under different elastic moduli

    下载: 导出CSV
  • [1] 王汉伟. 桥梁受船舶撞击分析[D]. 重庆: 重庆交通大学, 2014.

    WANG Han-wei. Analysis of the ship-bridge collision[D]. Chongqing: Chongqing Jiaotong University, 2014. (in Chinese).
    [2] WANG Li-li, YANG Li-ming, TANG Chang-gang, et al. On the impact force and energy transformation in ship-bridge collisions[J]. International Journal of Protective Structures, 2012, 3(1): 105-120. doi: 10.1260/2041-4196.3.1.105
    [3] 郝二通, 柳英洲, 柳春光. 海上风机单桩基础受船舶撞击的数值研究[J]. 振动与冲击, 2015, 34(3): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201503003.htm

    HAO Er-tong, LIU Ying-zhou, LIU Chun-guang. Numerical simulation of monopile foundation of an offshore wind turbine subjected to ship impact[J]. Journal of Vibration and Shock, 2015, 34(3): 7-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201503003.htm
    [4] YUN H, NAYERI R, TASBIHGOO F, et al. Monitoring the collision of a cargo ship with the Vincent Thomas Bridge[J]. Structural Control and Health Monitoring, 2008, 15(2): 183-206. doi: 10.1002/stc.213
    [5] FAN Wei, YUAN Wan-cheng. Ship bow force-deformation curves for ship-impact demand of bridges considering effect of pile-cap depth[J]. Shock and Vibration, 2014, 2014(2): 1-19.
    [6] LEI Zheng-bao, CHEN Zhu, LEI Mu-xi, et al. Research on safety technology for initiative anti-collision of bridge[J]. Applied Mechanics and Materials, 2012, 204-208: 2196-2199. doi: 10.4028/www.scientific.net/AMM.204-208.2196
    [7] ZHU Bin, CHEN Ren-peng, CHEN Yun-min, et al. Impact model tests and simplified analysis for flexible pile-supported protective structures withstanding vessel collisions[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2012, 138(2): 86-96. doi: 10.1061/(ASCE)WW.1943-5460.0000110
    [8] CHANG Liu-hong, JIANG Chang-bao, LIAO Man-jun, et al. Nonlinear dynamic response of buoys under the collision load with ships[J]. Applied Mechanics and Materials, 2012, 204-208: 4455-4459. doi: 10.4028/www.scientific.net/AMM.204-208.4455
    [9] 吴广怀, 于群力, 陈徐均. 非通航孔桥的大距离走锚消能式防撞系统[J]. 公路, 2009(1): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200901047.htm

    WU Guang-huai, YU Qun-li, CHEN Xu-jun. An energy consumed collision-prevention system of long distance anchor moving for non-navigational bridge[J]. Highway, 2009(1): 213-218. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200901047.htm
    [10] 祝世华. 海上大型桥梁非通航孔防撞问题研究[J]. 港工技术, 2011, 48(6): 12-14, 49. doi: 10.3969/j.issn.1004-9592.2011.06.004

    ZHU Shi-hua. Anti-collision study on non-navigable openings of large sea bridge[J]. Port Engineering Technology, 2011, 48(6): 12-14, 49. (in Chinese). doi: 10.3969/j.issn.1004-9592.2011.06.004
    [11] 陈国虞, 倪步友, 张澄, 等. 跨海湾(河湾)桥梁非通航孔柔性拦船防撞装置[J]. 广东造船, 2011, 30(1): 38-41. doi: 10.3969/j.issn.2095-6622.2011.01.009

    CHEN Guo-yu, NI Bu-you, ZHANG Cheng, et al. Flexible ship-bridge collision protection for the piers of un-navigable spans of bay bridge[J]. Guangdong Shipbuilding, 2011, 30(1): 38-41. (in Chinese). doi: 10.3969/j.issn.2095-6622.2011.01.009
    [12] 陈云鹤, 朱应欣, 宋刚, 等. 运河桥梁浮式防船撞设施的模拟计算[J]. 解放军理工大学学报: 自然科学版, 2009, 10(6): 559-564. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200906008.htm

    CHEN Yun-he, ZHU Ying-xin, SONG Gang, et al. Simulation calculation of floating-facility for anti-collision between ship and bridge over canal[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2009, 10(6): 559-564. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200906008.htm
    [13] 陈徐均, 黄光远, 吴广怀. 船舶撞击锚泊防撞系统的能量平衡关系分析[J]. 解放军理工大学学报: 自然科学版, 2009, 10(1): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200901012.htm

    CHEN Xu-jun, HUANG Guang-yuan, WU Guang-huai, et al. Energy balance relationship in collision between ship and moored collision-prevention system[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2009, 10(1): 71-76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200901012.htm
    [14] 陈徐均, 黄光远, 吴广怀, 等. 柔性浮式系统受撞后运动的算法及其收敛性[J]. 解放军理工大学学报: 自然科学版, 2011, 12(5): 501-506. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201105019.htm

    CHEN Xu-jun, HUANG Guang-yuan, WU Guang-huai, et al. New numerical method for flexible floating collision-prevention system and its convergency discussion[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2011, 12(5): 501-506. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201105019.htm
    [15] CHEN Xu-jun, HUANG Guang-yuan, WU Guang-huai, et al. Numerical simulation for the motion of the flexible floating collision-prevention system[J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(1): 1-9.
    [16] KOTERAYAMA W. Motions of moored floating body and dynamic tension of mooring lines in regular waves[R]. Hakon: Kyushu University, 1978.
    [17] KOTERAYAMA W, NAKAMURA M. Hydrodynamic forces acting on a vertical circular cylinder oscillating with a very low frequency in waves[J]. Ocean Engineering, 1988, 15(3): 271-287. doi: 10.1016/0029-8018(88)90045-5
    [18] KOTERAYAMA W, NAKAMURA M. Drag and inertia force coefficients derived from field tests[J]. International Journal of Offshore and Polar Engineering, 1992, 2(3): 162-167.
    [19] TOSHIO N. A study of the dynamics of various types by lumped mass method[D]. Tokyo: University of Tokyo, 1991.
    [20] BLIEK A. Dynamic analysis of single span cables[D]. Boston: Massachusetts Institute of Technology, 1994.
    [21] NAKAMURA M, KOTERAYAMA W, KYOZUKA Y. Slow drift damping due to drag forces acting on mooring lines[J]. Ocean Engineering, 1991, 18(4): 283-296. doi: 10.1016/0029-8018(91)90015-I
    [22] SHASHIKALA A P, SUNDARAYADIVELU R, GANAPATHY C. Dynamics of a moored barge under regular and random waves[J]. Ocean Engineering, 1997, 24(5): 401-430. doi: 10.1016/S0029-8018(96)00019-4
    [23] FREIRE A M S, NEGRAO J H O, LOPES A V. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges[J]. Computers and Structures, 2006, 84(31/32): 2128-2140.
    [24] DANIELL W E, MACDONALD J H G. Improved finite element modelling of a cable-stayed bridge through systematic manual tuning[J]. Engineering Structures, 2007, 29(3): 358-371. doi: 10.1016/j.engstruct.2006.05.003
    [25] 罗伟铭, 石少卿, 田镇华, 等. 钢丝增强复合条带抗弹性能数值分析[J]. 后勤工程学院学报, 2014, 30(5): 6-9, 46. doi: 10.3969/j.issn.1672-7843.2014.05.002

    LUO Wei-ming, SHI Shao-qing, TIAN Zhen-hua, et al. Numerical analysis of anti-bullet performance of steel-reinforced composite strip[J]. Journal of Logistical Engineering University, 2014, 30(5): 6-9, 46. (in Chinese). doi: 10.3969/j.issn.1672-7843.2014.05.002
    [26] 李斌, 韦成龙, 陈积光, 等. 能量法计算线弹性结构位移[J]. 湖南理工学院学报: 自然科学版, 2014, 27(4): 43-45, 92. doi: 10.3969/j.issn.1672-5298.2014.04.010

    LI Bin, WEI Cheng-long, CHEN Ji-guang, et al. Calculation of displacement of linear elastic structure with energy method[J]. Journal of Hunan Institute of Science and Technology: Natural Sciences, 2014, 27(4): 43-45, 92. (in Chinese). doi: 10.3969/j.issn.1672-5298.2014.04.010
    [27] 李啟定, 李克天. 微位移工作台柔性铰链参数分析和优化[J]. 机电工程技术, 2015, 44(1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201501020.htm

    LI Qi-ding, LI Ke-tian. Optimized and parameters analysis of flexible hinge micro-displacement[J]. Mechanical and Electrical Engineering Technology, 2015, 44(1): 72-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201501020.htm
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  629
  • HTML全文浏览量:  101
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-12
  • 刊出日期:  2016-06-25

目录

    /

    返回文章
    返回