留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆转向架全域应力推演与实时监控

唐兆 聂隐愚 邬平波

唐兆, 聂隐愚, 邬平波. 车辆转向架全域应力推演与实时监控[J]. 交通运输工程学报, 2016, 16(3): 63-71. doi: 10.19818/j.cnki.1671-1637.2016.03.008
引用本文: 唐兆, 聂隐愚, 邬平波. 车辆转向架全域应力推演与实时监控[J]. 交通运输工程学报, 2016, 16(3): 63-71. doi: 10.19818/j.cnki.1671-1637.2016.03.008
TANG Zhao, NIE Yin-yu, WU Ping-bo. Whole-field stress prediction and real-time monitoring of vehicle bogie[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 63-71. doi: 10.19818/j.cnki.1671-1637.2016.03.008
Citation: TANG Zhao, NIE Yin-yu, WU Ping-bo. Whole-field stress prediction and real-time monitoring of vehicle bogie[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 63-71. doi: 10.19818/j.cnki.1671-1637.2016.03.008

车辆转向架全域应力推演与实时监控

doi: 10.19818/j.cnki.1671-1637.2016.03.008
基金项目: 

国家自然科学基金项目 51405402

国家自然科学基金项目 51205325

国家自然科学基金项目 U1334206

牵引动力国家重点实验室开放课题 2015TPL_T06

详细信息
    作者简介:

    唐兆(1979-), 男, 四川南充人, 西南交通大学讲师, 工学博士, 从事轨道交通仿真与可视化研究

  • 中图分类号: U270.33

Whole-field stress prediction and real-time monitoring of vehicle bogie

More Information
  • 摘要: 为了提高疲劳强度评定和疲劳寿命预测的可靠性与精度, 基于结构可测位置应力提出了全域应力推演方法进行任意位置的应力预测。引入了基于无网格计算的径向基函数插值理论, 建立了新的插值域选择规则, 改进了传统Multi-Quadric(M-Q)径向基函数。为了验证改进的M-Q径向基函数的插值性能, 在对转向架构架施加横向载荷为58 kN, 牵引载荷为55 kN, 垂向载荷为85 kN, 选取了应力不可直接测量的8个位置, 分别采用改进的M-Q径向基函数与薄板样条(TPS)径向基函数进行插值精度比较。分析结果表明: 采用改进的M-Q径向基函数预测的应力最大相对误差为0.090 6%, 平均相对误差为0.028 4%, 采用TPS径向基函数预测的应力最大相对误差为1.611 3%, 平均相对误差为0.604 2%, 因此, 采用改进的M-Q径向基函数推演转向架构架应变片不可测位置应力的计算精度远优于采用TPS径向基函数的精度; 结合改进的M-Q径向基函数插值算法, 开发了一套车辆转向架全域应力推演和实时监控系统(TPL Monitoring), 具有良好的交互性、实时性和可扩展性。

     

  • 图  1  转向架上典型不可直接测量位置

    Figure  1.  Typical unmeasurable positions of bogie

    图  2  台架试验

    Figure  2.  Bench experiment

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  不同c值的M-Q径向基函数曲线

    Figure  4.  Curves of M-Q radial basis function with different c values

    图  5  推演点位置

    Figure  5.  Positions of predicting points

    图  6  改进的M-Q和TPS径向基函数相对误差比较

    Figure  6.  Comparison of relative errors between modified M-Q and TPS radial basis functions

    图  7  系统硬件结构

    Figure  7.  Hardware structure of system

    图  8  系统处理流程

    Figure  8.  Processing flow of system

    表  1  改进的M-Q和TPS径向基函数推演结果

    Table  1.   Prediction results of modified M-Q and TPS radial basis functions

    下载: 导出CSV
  • [1] CHU T C, RANSON W F, SUTTON M A. Applications of digital-image-correlation techniques to experimental mechanics[J]. Experimental Mechanics, 1985, 25(3): 232-244. doi: 10.1007/BF02325092
    [2] PAN Bing, QIAN Ke-mao, XIE Hui-min, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 2009, 20(6): 1-17.
    [3] KASHFUDDOJA M, RAMJI M. Whole-field strain analysis and damage assessment of adhesively bonded patch repair of CFRP laminates using 3D-DIC and FEA[J]. Composites Part B: Engineering, 2013, 53(5): 46-61.
    [4] GODINHO L, DIAS-DA-COSTA D, VALENCA J, et al. An efficient technique for surface strain recovery from photogrammetric data using meshless interpolation[J]. Strain, 2014, 50(2): 132-146. doi: 10.1111/str.12073
    [5] BONNET M, CONSTANTINESCU A. Inverse problems in elasticity[J]. Inverse Problems, 2005, 21(2): 1-58.
    [6] LIGGETT J A, CHEN L C. Inverse transient analysis in pipe networks[J]. Journal of Hydraulic Engineering, 1994, 120(8): 934-955. doi: 10.1061/(ASCE)0733-9429(1994)120:8(934)
    [7] CHANG C C, ZHOU Li. Neural network emulation of inverse dynamics for a magnetorheological damper[J]. Journal of Structural Engineering, 2002, 128(2): 231-239. doi: 10.1061/(ASCE)0733-9445(2002)128:2(231)
    [8] NGUYEN V P, RABCZUK T, BORDAS S, et al. Meshless methods: a review and computer implementation aspects[J]. Mathematics and Computers in Simulation, 2008, 79(3): 763-813. doi: 10.1016/j.matcom.2008.01.003
    [9] LIEW K M, ZHAO Xin, FERREIRA A J. A review of meshless methods for laminated and functionally graded plates and shells[J]. Composite Structures, 2011, 93(8): 2031-2041.
    [10] ANDRIANOPOULOS N P. Full-field displacement measurement of a speckle grid by using a mesh-free deformation function[J]. Strain, 2006, 42(4): 265-271. doi: 10.1111/j.1475-1305.2006.00287.x
    [11] 马利敏. 径向基函数逼近中的若干理论、方法及其应用[D]. 上海: 复旦大学, 2009.

    MA Li-min. Some theory, methods and application in RBF approaching[D]. Shanghai: Fudan University, 2009. (in Chinese).
    [12] CHENG A H D. Multiquadric and its shape parameter—a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation[J]. Engineering Analysis with Boundary Elements, 2012, 36(2): 220-239. doi: 10.1016/j.enganabound.2011.07.008
    [13] HARDY R L. Multiquadric equations of topography and other irregular surfaces[J]. Journal of Geophysical Research, 1971, 76(8): 1905-1915. doi: 10.1029/JB076i008p01905
    [14] 于志玲, 张阳. 最佳一致逼近理论中哈尔(Haar)条件的等价定义[J]. 南开大学学报: 自然科学版, 2006, 39(3): 101-103. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDZ200603020.htm

    YU Zhi-ling, ZHANG Yang. The equivalent definition of Haar condition in best uniform approximation theory[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2006, 39(3): 101-103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NKDZ200603020.htm
    [15] DOLBOW J, BELYTSCHKO T. An introduction to programming the meshless element free Galerkin method[J]. Archives of Computational Methods in Engineering, 1998, 5(3): 207-241. doi: 10.1007/BF02897874
    [16] WANG J G, LIU G R. A point interpolation meshless method based on radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2002, 54(11): 1623-1648.
    [17] FRANKE R. A critical comparison of some methods for interpolation of scattered data[R]. Monterey: Naval Postgraduate School, 1979.
    [18] FRANKE R. Scattered data interpolation: tests of some methods[J]. Mathematics of Computation, 1982, 38(157): 181-200.
    [19] MCCANN D M, FORDE M C. Review of NDT methods in the assessment of concrete and masonry structures[J]. NDT and E International, 2001, 34(2): 71-84.
    [20] CHANG P C, FLATAU A, LIU S C. Review paper: health monitoring of civil infrastructure[J]. Structural Health Monitoring, 2003, 2(3): 257-267.
    [21] MUSALLAM M, JOHNSON C M. An efficient implementation of the rainflow counting algorithm for life consumption estimation[J]. IEEE Transactions on Reliability, 2012, 61(4): 978-986.
    [22] 倪侃. 随机疲劳累积损伤理论研究进展[J]. 力学进展, 1999, 29(1): 43-65. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199901004.htm

    NI Kan. Advances in stochastic theory of fatigue damage accumulation[J]. Advances in Mechanics, 1999, 29(1): 43-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199901004.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  134
  • PDF下载量:  614
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-12
  • 刊出日期:  2016-06-25

目录

    /

    返回文章
    返回