Mechanical property of polypropylene fiber reinforced concrete under freezing-thawing cycle effect
-
摘要: 通过4组不同配合比聚丙烯纤维混凝土的快速冻融循环试验, 测得了不同冻融循环次数后混凝土的抗压强度、纵波波速与动弹性模量, 研究了冻融循环作用下不同配合比聚丙烯纤维混凝土的力学性能与损伤量特征, 分析了材料性质、材料配合比与冻融循环次数对力学性能的影响。分析结果表明: 冻融循环200次后, 未掺加引气剂的C30聚丙烯纤维混凝土、掺加引气剂的C30聚丙烯纤维混凝土、未掺加引气剂的C40聚丙烯纤维混凝土、掺加引气剂的C40聚丙烯纤维混凝土的抗压强度损失率分别为46.53%、49.05%、34.56%、37.64%;冻融循环300次后, 4组聚丙烯纤维混凝土纵波波速分别降低了8.42%、6.48%、16.72%、11.68%, 动弹性模量分别降低了46.54%、35.72%、54.41%、53.72%;冻融循环150次后, C30和C40聚丙烯纤维混凝土损伤量迅速增长, 且C40聚丙烯纤维混凝土损伤量高于C30聚丙烯纤维混凝土; 在相同的冻融次数下, 未掺加引气剂的C40聚丙烯纤维混凝土的损伤量最大; 抗冻性能的改善效果从大到小依次为掺加引气剂C30聚丙烯纤维混凝土、未掺加引气剂C30聚丙烯纤维混凝土、掺加引气剂C40聚丙烯纤维混凝土、未掺加引气剂C40聚丙烯纤维混凝土。Abstract: Through fast freezing-thawing cycle test on four groups of polypropylene fiber reinforced concretes with different mix proportions, the compressive strength, longitudinal wave velocity and dynamic elastic modulus of concrete after different times of freezing-thawing cycleswere obtained, the mechanical property and damage amount characteristics of polypropylene fiber reinforced concrete under freezing-thawing cycle effect were studied, and the effects of material property, material mix proportion and times of freezing-thawing cycles on the mechanical property were analyzed. Analysis result shows that after 200 times of freezing-thawing cycles, the compressive strength loss rates of C30 polypropylene fiber reinforced concrete without air entraining agent, C30 polypropylene fiber reinforced concrete with air entraining agent, C40 polypropylene fiber reinforced concrete without air entraining agent and C40 polypropylene fiber reinforced concrete with air entraining agent are 46. 53%, 49.05%, 34.56%and 37.64%respectively. After 300 times of freezingthawing cycles, the longitudinal wave velocities of four groups of polypropylene fiber reinforced concretes decrease by 8.42%, 6.48%, 16.72%and 11.68%respectively, and the dynamic elastic moduli decrease by 46. 54%, 35.72%, 54.41% and 53.72% respectively. After 150 times of freezing-thawing cycles, the damage amounts of C30 and C40polypropylene fiber reinforced concrete increase rapidly, and the damage amount of C40 polypropylene fiber reinforced concrete is bigger than that of C30 polypropylene fiber reinforced concrete. Under the same times of freezing-thawing cycles, the damage amount of C40 polypropylene fiber reinforced concrete without air entraining agent is biggest. The improving effects on frost resistance property from big to small are C30 polypropylene fiber reinforced concrete with air entraining agent, C30 polypropylene fiber reinforced concrete without air entraining agent, C40 polypropylene fiber reinforced concrete with air entraining agent, C40 polypropylene fiber reinforced concrete without air entraining agent.
-
表 1 聚丙烯纤维的性能参数
Table 1. Performance parameters of polypropylene fiber
表 2 混凝土配合比设计参数
Table 2. Design parameters of concrete mix proportions
表 3 不同冻融循环次数下混凝土的抗压强度
Table 3. Concrete compressive strength with different times of freezing-thawing cycles
表 4 不同冻融循环次数下纵波波速
Table 4. Longitudinal wave velocities with different times of freezing-thawing cycles
表 5 不同冻融循环次数下聚丙烯纤维混凝土质量
Table 5. Masses of polypropylene fiber reinforced concrete with different times of freezing-thawing cycles
表 6 不同冻融循环次数下聚丙烯纤维混凝土动弹性模量
Table 6. Dynamic elastic moduli of polypropylene fiber reinforced concrete with different times of freezing-thawing cycles GPa
-
[1] DETWILER R J, DALGLEISH B J, WILLIAMSON R B. Assessing the durability of concrete in freezing and thawing[J]. ACI Materials Journal, 1989, 86(1): 29-35. [2] SOROUSHIA P, NAGI M, OKWUEGBU A. Freeze-thaw durability of lightweight carbon fiber reinforced cement composites[J]. ACI Materials Journal, 1992, 89(5): 491-494. [3] ALEXANDER M G, MAGEE B J. Durability performance of concrete containing condensed silica fume[J]. Cement and Concrete Research, 1999, 29(6): 917-922. doi: 10.1016/S0008-8846(99)00064-2 [4] CAI H, LIU X. Freeze-thaw durability of concrete: ice formation process in pores[J]. Cement and Concrete Research, 1998, 28(9): 1281-1287. doi: 10.1016/S0008-8846(98)00103-3 [5] MOUKWA M, AITCIN P C, PIGEON M, et al. Freezethaw tests of concrete in sea water[J]. ACI Materials Journal, 1989, 86(4): 360-366. [6] COHEN M D, ZHOU Y, DOLCH W L. Non-air-entrained high-strength concrete—is it frost resistant?[J]. ACI Materials Journal, 1992, 89(4): 406-415. [7] 牛荻涛, 姜磊, 白敏. 钢纤维混凝土抗冻性能试验研究[J]. 土木建筑与环境工程, 2012, 34(4): 80-84, 98. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201204014.htmNIU Di-tao, JIANG Lei, BAI Min. Experimental analysis on the frost resistance of steel fiber reinforced concrete[J]. Journal of Civil, Architectural and Environmental Engineering, 2012, 34(4): 80-84, 98. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201204014.htm [8] 王玲, 李刚. 纤维混凝土在冻融循环、冻融-氯盐共同作用下的耐久性试验研究[J]. 混凝土, 2002(12): 43-46. doi: 10.3969/j.issn.1002-3550.2002.12.013WANG Ling, LI Gang. Durability of fiber concrete on the action of freezing-thawing cycles and on the simultaneous actions of freezing-thawing cycles and deicing[J]. Concrete, 2002(12): 43-46. (in Chinese). doi: 10.3969/j.issn.1002-3550.2002.12.013 [9] 陈柳灼, 张广泰, 黄伟敏, 等. 纤维混凝土在冻融循环下的损伤研究[J]. 科学技术与工程, 2015, 15(5): 145-150. doi: 10.3969/j.issn.1671-1815.2015.05.027CHEN Liu-zhuo, ZHANG Guang-tai, HUANG Wei-min, et al. The injury research of fiber reinforced concrete under freezethaw cycles[J]. Science Technology and Engineering, 2015, 15(5): 145-150. (in Chinese). doi: 10.3969/j.issn.1671-1815.2015.05.027 [10] 刘卫东, 苏文悌, 王依民. 冻融循环作用下纤维混凝土的损伤模型研究[J]. 建筑结构学报, 2008, 29(1): 124-128. doi: 10.3321/j.issn:1000-6869.2008.01.018LIU Wei-dong, SU Wen-ti, WANG Yi-min. Research on damage model of fibre concrete under action of freeze-thaw cycle[J]. Journal of Building Structures, 2008, 29(1): 124-128. (in Chinese). doi: 10.3321/j.issn:1000-6869.2008.01.018 [11] 李燕, 申向东. 不同纤维掺量轻骨料混凝土冻融循环后力学性能及损伤量的研究[J]. 工程力学, 2009, 26(增1): 81-83, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2009S1022.htmLI Yan, SHEN Xiang-dong. The research on mechanics and blemish degree of different fiber content lightweight aggregate concrete after freeze-thaw cycle[J]. Engineering Mechanics, 2009, 26(S1): 81-83, 93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2009S1022.htm [12] ÇAVDAR A. Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars[J]. Composites Part B: Engineering, 2014, 58: 463-472. doi: 10.1016/j.compositesb.2013.11.013 [13] SHANG Huai-shuai, SONG Yu-pu. Behavior of air-entrained concrete under the compression with constant confined stress after freeze-thaw cycles[J]. Cement and Concrete Composites, 2008, 30(9): 854-860. doi: 10.1016/j.cemconcomp.2007.10.006 [14] 江凯, 苏谦, 冯旭. 早强型含水不饱和聚氨酯混凝土力学性能[J]. 交通运输工程学报, 2016, 16(2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201602003.htmJIANG Kai, SU Qian, FENG Xu. Mechanical property of early-strength water-containing unsaturated polyurethane concrete[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 10-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201602003.htm [15] SHANG Huai-shuai, SONG Yu-pu, QIN Li-kun. Experimental study on strength and deformation of plain concrete under triaxial compression after freeze-thaw cycles[J]. Building and Environment, 2008, 43(7): 1197-1204. doi: 10.1016/j.buildenv.2006.08.027 [16] 肖前慧. 冻融环境多因素耦合作用混凝土结构耐久性研究[D]. 西安: 西安建筑科技大学, 2010.XIAO Qian-hui. Concrete structure durability in freezingthawing circumstance based on multi-factor effects[D]. Xi'an: Xi'an University of Architecture and Technology, 2010. (in Chinese). [17] 黄星, 李东庆, 明锋, 等. 冻结粉质黏土声学特性与物理力学性质试验研究[J]. 岩石力学与工程学报, 2015, 34(7): 1489-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507022.htmHUANG Xing, LI Dong-qing, MING Feng, et al. Experimental study on acoustic characteristics and physic-mechanical properties of frozen silty clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1489-1496. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507022.htm [18] 黄星, 李东庆, 明锋, 等. 冻结重塑黄土单轴加载过程中声波传播特性试验研究[J]. 岩土工程学报, 2015, 37(9): 1660-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509018.htmHUANG Xing, LI Dong-qing, MING Feng, et al. Experimental study on acoustic wave propagation properties of frozen remolded loess during uniaxial loading process[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1660-1667. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509018.htm [19] 王大雁, 朱元林, 马巍, 等. 冻土超声波波速与冻土物理力学性质试验研究[J]. 岩石力学与工程学报, 2003, 22(11): 1837-1840. doi: 10.3321/j.issn:1000-6915.2003.11.017WANG Da-yan, ZHU Yuan-lin, MA Wei, et al. Testing study on relationship between ultrasonic wave velocities and physic-mechanical property of frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1837-1840. (in Chinese). doi: 10.3321/j.issn:1000-6915.2003.11.017 [20] WANG Da-yan, ZHU Yuan-lin, MA Wei, et al. Application of ultrasonic technology for physical-mechanical properties of frozen soils[J]. Cold Regions Science and Technology, 2006, 44(1): 12-19. doi: 10.1016/j.coldregions.2005.06.003 [21] 王大雁, 马巍, 常小晓, 等. 冻融循环作用对青藏黏土物理力学性质的影响[J]. 岩石力学与工程学报, 2005, 24(23): 4313-4319. doi: 10.3321/j.issn:1000-6915.2005.23.018WANG Da-yan, MA Wei, CHANG Xiao-xiao, et al. Physico-mechanical properties changes of Qinghai-Tibet clay due to cyclic freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4313-4319. (in Chinese). doi: 10.3321/j.issn:1000-6915.2005.23.018 [22] 邴慧, 何平. 冻融循环对含盐土物理力学性质影响的试验研究[J]. 岩土工程学报, 2009, 31(12): 1958-1962. doi: 10.3321/j.issn:1000-4548.2009.12.025BING Hui, HE Ping. Influence of freeze-thaw cycles on physical and mechanical properties of salty soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1958-1962. (in Chinese). doi: 10.3321/j.issn:1000-4548.2009.12.025 [23] 杨成松, 何平, 程国栋, 等. 含盐冻结粉质黏土单轴抗压强度试验研究[J]. 工程力学, 2006, 23(1): 144-148.YANG Cheng-song, HE Ping, CHENG Guo-dong, et al. Uniaxial compressive strength of frozen saline silty clay[J]. Engineering Mechanics, 2006, 23(1): 144-148. (in Chinese). [24] SHE Wei, ZHANG Yun-sheng, JONES M R. Using the ultrasonic wave transmission method to study the setting behavior of foamed concrete[J]. Construction and Building Materials, 2014, 51: 62-74. doi: 10.1016/j.conbuildmat.2013.10.066 [25] 张立翔, 王时超, 赵造东. 混凝土疲劳损伤强度可靠度置信限分析[J]. 工程力学, 2004, 21(4): 139-143, 132. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200404024.htmZHANG Li-xiang, WANG Shi-chao, ZHAO Zao-dong. Analysis of reliability confidence limits of fatigue damage strength of concrete[J]. Engineering Mechanics, 2004, 21(4): 139-143, 132. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200404024.htm [26] 丰茂东, 李建波, 林皋, 等. 随机力学参量对混凝土细观损伤演化的影响[J]. 建筑科学与工程学报, 2010, 27(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201004001.htmFENG Mao-dong, LI Jian-bo, LIN Gao, et al. Influence of stochastic mechanical parameters on meso-damage evolution of concrete[J]. Journal of Architecture and Civil Engineering, 2010, 27(4): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201004001.htm [27] 金玉, 王向东, 徐道远, 等. 基于无损弹塑性模型的混凝土损伤定量分析[J]. 河海大学学报: 自然科学版, 2003, 31(6): 659-661. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200306014.htmJIN Yu, WANG Xiang-dong, XU Dao-yuan, et al. Elasticplastic undamaged model-based quantitative analysis of concrete damage[J]. Journal of Hohai University: Natural Sciences, 2003, 31(6): 659-661. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200306014.htm [28] 蒋国平, 焦楚杰. 基于SHPB试验的钢纤混凝土损伤研究[J]. 混凝土, 2009(3): 24-25, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200903010.htmJIANG Guo-ping, JIAO Chu-jie. SHPB experimental damage investigation used for steel-fiber reinforced concrete[J]. Concrete, 2009(3): 24-25, 43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200903010.htm