留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多年冻土区热棒路基应用效果

刘戈 汪双杰 金龙 董元宏 袁堃

刘戈, 汪双杰, 金龙, 董元宏, 袁堃. 多年冻土区热棒路基应用效果[J]. 交通运输工程学报, 2016, 16(4): 59-67. doi: 10.19818/j.cnki.1671-1637.2016.04.006
引用本文: 刘戈, 汪双杰, 金龙, 董元宏, 袁堃. 多年冻土区热棒路基应用效果[J]. 交通运输工程学报, 2016, 16(4): 59-67. doi: 10.19818/j.cnki.1671-1637.2016.04.006
LIU Ge, WANG Shuang-jie, JIN Long, DONG Yuan-hong, YUAN Kun. Applicable effect of thermosyphon subgrades in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 59-67. doi: 10.19818/j.cnki.1671-1637.2016.04.006
Citation: LIU Ge, WANG Shuang-jie, JIN Long, DONG Yuan-hong, YUAN Kun. Applicable effect of thermosyphon subgrades in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 59-67. doi: 10.19818/j.cnki.1671-1637.2016.04.006

多年冻土区热棒路基应用效果

doi: 10.19818/j.cnki.1671-1637.2016.04.006
基金项目: 

国家科技支撑计划项目 2014BAG05B03

国家科技支撑计划项目 2014BAG05B07

交通运输部建设科技项目 2013 318 490 010

交通运输部应用基础研究项目 2014 319 495 090

详细信息
    作者简介:

    刘戈(1979-), 男, 山东泰安人, 中交第一公路勘察设计研究院有限公司高级工程师, 工学博士, 从事多年冻土路基工程研究

  • 中图分类号: U416.168

Applicable effect of thermosyphon subgrades in permafrost regions

More Information
    Author Bio:

    LIU Ge(1979-), male, senior engineer, PhD, +86-29-87600996, 416954907@qq.com

  • 摘要: 为了研究热棒在青藏公路多年冻土区的应用效果, 基于楚玛尔河试验监测场地8年的地温观测数据, 以水平温度梯度为指标, 分析了不同时期热棒的有效半径。为了提高热棒的调控效果, 拓展热棒的使用范围, 满足宽幅路基强吸热的使用要求, 依托北麓河与安多2个试验监测场地, 分析了热棒-XPS板路基与热棒-片块石路基地温监测数据。分析结果表明: 热棒工作1年后的有效半径约为2.3m, 此后, 随着热棒工作时间的增加, 热棒影响范围逐渐增大; 在热棒工作的前5年, 地温降幅明显, 周围土体地温降幅都基本维持在0.5℃以上, 之后每年降温较小, 这主要是由于外界环境温度升高, 气温与地温的温差逐渐减小, 热棒工作的动力逐渐衰减引起的; 在热棒工作的8年中, 由于热棒的持续制冷作用, 热棒路基的人为上限基本不变, 而普通路基同时期人为上限最大降低约为80cm; 热棒-XPS板路基从6月份开始, XPS板上下温差不断增大, 最大温差约为17℃, 有效阻隔了暖季大量热量向板下传递; 热棒-片块石路基通过2年的调控作用, 地温最大降幅为0.51℃。

     

  • 图  1  热棒路基

    Figure  1.  Thermosyphon subgrade

    图  2  测温孔布设

    Figure  2.  Layout of observational boreholes

    图  3  2月份地温曲线

    Figure  3.  Ground temperature curve in February

    图  4  地温对比

    Figure  4.  Comparison of ground temperatures

    图  5  水平方向的地温曲线

    Figure  5.  Horizontal ground temperature curves

    图  6  平均的水平地温曲线

    Figure  6.  Average horizontal ground temperature curves

    图  7  观测孔地温曲线

    Figure  7.  Ground temperature curves at observational boreholes

    图  8  左路肩地温对比

    Figure  8.  Comparison of ground temperatures at left shoulders

    图  9  路基中心线地温对比

    Figure  9.  Comparison of ground temperatures at center lines of subgrades

    图  10  直插热棒-XPS板复合路基

    Figure  10.  Combined subgrade with XPS insulation board and inserted thermosyphons

    图  11  发卡热棒-XPS板复合路基

    Figure  11.  Combined subgrade with XPS insulation board and hairpin thermosyphons

    图  12  一月上旬路中孔地温对比

    Figure  12.  Comparison of ground temperatures at mid-subgrade boreholes in early January

    图  13  XPS板上下温差曲线

    Figure  13.  Curves of temperature difference between top and bottom of XPS insulation board

    图  14  发卡热棒路基地温变化过程

    Figure  14.  Changing processes of ground temperatures of hairpin thermosyphon subgrade

    图  15  热棒-片块石复合路基

    Figure  15.  Combined subgrade with crushed rocks and thermosyphons

    图  16  路中孔地温对比

    Figure  16.  Comparison of ground temperatures for borehole at subgrade center

  • [1] 汪双杰, 陈建兵, 李仙虎. 多年冻土地区公路修筑技术研究与工程实践[J]. 冰川冻土, 2009, 31(2): 384-392. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200902028.htm

    WANG Shuang-jie, CHEN Jian-bing, LI Xian-hu. The highway construction technology in permafrost regions: research and engineering practice[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 384-392. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200902028.htm
    [2] 温智, 盛煜, 马巍, 等. 保温法保护多年冻土的长期效果分析[J]. 冰川冻土, 2006, 28(5): 760-765. doi: 10.3969/j.issn.1000-0240.2006.05.020

    WEN Zhi, SHENG Yu, MA Wei, et al. Long-term effect of insulation on permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 760-765. (in Chinese). doi: 10.3969/j.issn.1000-0240.2006.05.020
    [3] 刘戈, 樊凯, 朱东鹏, 等. 多年冻土区路基调控措施的设计方法及适用性[J]. 公路交通科技, 2008, 25(9): 279-281, 290. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ2008S1073.htm

    LIU Ge, FAN Kai, ZHU Dong-peng, et al. The design way and the applicability of the regulation[J]. Journal of Highway and Transportation Research and Development, 2008, 25(9): 279-281, 290. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ2008S1073.htm
    [4] MU Yan-hu, WANG Guo-shang, YU Qi-hao, et al. Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 226-236. doi: 10.1016/j.coldregions.2015.06.006
    [5] 李永强, 吴志坚, 王引生, 等. 青藏铁路冻土路基热棒应用效果试验研究[J]. 中国铁道科学, 2008, 29(6): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200806001.htm

    LI Yong-qiang, WU Zhi-jian, WANG Yin-sheng, et al. Test study on the application effect of the thermal pipes on the roadbed in the permafrost region along Qinghai-Tibet Railway[J]. China Railway Science, 2008, 29(6): 6-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200806001.htm
    [6] WU Di, JIN Long, PENG Jian-bing, et al. The thermal budget evaluation of the two-phase closed thermosyphon embankment of the Qinghai-Tibet Highway in permafrost regions[J]. Cold Regions Science and Technology, 2014, 103(7): 115-122.
    [7] WEN Zhi, SHENG Yu, MA Wei, et al. Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions[J]. Cold Regions Science and Technology, 2005, 43(3): 150-163. doi: 10.1016/j.coldregions.2005.04.001
    [8] ZHANG Ming-yi, LAI Yuan-ming, ZHANG Jian-ming, et al. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions[J]. Cold Regions Science and Technology, 2011, 65(2): 203-210. doi: 10.1016/j.coldregions.2010.08.001
    [9] 孙文, 吴亚平, 郭春香, 等. 热棒对多年冻土路基稳定性的影响[J]. 中国公路学报, 2009, 22(5): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200905002.htm

    SUN Wen, WU Ya-ping, GUO Chun-xiang, et al. Influences of two-phase closed thermosyphon on permafrost roadbed stability[J]. China Journal of Highway and Transport, 2009, 22(5): 15-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200905002.htm
    [10] DONG Yuan-hong, LAI Yuan-ming, XU Xiang-tian, et al. Using perforated ventilation ducts to enhance the cooling effect of crushed-rock interlayer on embankments in permafrost regions[J]. Cold Regions Science and Technology, 2010, 62(1): 76-82. doi: 10.1016/j.coldregions.2010.03.003
    [11] 潘卫东, 连逢愈, 邓宏艳, 等. 寒区工程中热棒技术的应用原理和前景[J]. 岩石力学与工程学报, 2003, 22(增2): 2673-2676. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2027.htm

    PAN Wei-dong, LIAN Feng-yu, DENG Hong-yan, et al. Application principle and prospect of thermal-probe technique in cold regions engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2673-2676. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2027.htm
    [12] ZHANG Ming-yi, LAI Yuan-ming, WU Qing-bai, et al. A full-scale field experiment to evaluate the cooling performance of a novel composite embankment in permafrost regions[J]. International Journal of Heat and Mass Transfer, 2016, 95: 1047-1056. doi: 10.1016/j.ijheatmasstransfer.2015.12.067
    [13] 章金钊. 多年冻土地区公路路基设计技术研究[D]. 北京: 中国科学院研究生院, 2008.

    ZHANG Jin-zhao. Study on the heat conduction process of roadbed in permafrost region and new control methods[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2008. (in Chinese).
    [14] 田亚护, 刘建坤, 沈宇鹏. 青藏铁路多年冻土区热棒路基的冷却效果三维有限元分析[J]. 岩土工程学报, 2013, 35(增2): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2020.htm

    TIAN Ya-hu, LIU Jian-kun, SHEN Yu-peng. 3-D finite element analysis of cooling effect of Qinghai-Tibet Railway embankment with thermosyphons in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 113-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2020.htm
    [15] MA Wei, MU Yan-hu, WU Qing-bai, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2011, 67(3): 178-186. doi: 10.1016/j.coldregions.2011.02.010
    [16] 汪双杰, 黄晓明, 陈建兵, 等. 无动力热棒冷却冻土路基研究[J]. 公路交通科技, 2005, 22(3): 1-4, 20. doi: 10.3969/j.issn.1002-0268.2005.03.001

    WANG Shuang-jie, HUANG Xiao-ming, CHEN Jian-bing, et al. Research on frozen soil subgrade cooling by non-power heat pipe[J]. Journal of Highway and Transportation Research and Development, 2005, 22(3): 1-4, 20. (in Chinese). doi: 10.3969/j.issn.1002-0268.2005.03.001
    [17] WU Jun-jie, MA Wei, SUN Zhi-zhong, et al. In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2010, 60(3): 234-244. doi: 10.1016/j.coldregions.2009.11.002
    [18] LAI Yuan-ming, GUO Hong-xin, DONG Yuan-hong. Laboratory investigation on the cooling effect of the embankment with L-shaped thermosyphon and crushed-rock revetment in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58(3): 143-150. doi: 10.1016/j.coldregions.2009.05.002
    [19] SONG Yi, JIN Long, ZHANG Jin-zhao. In-situ study on cooling characteristics of two-phase closed thermosyphon embankment of Qinghai-Tibet Highway in permafrost regions[J]. Cold Regions Science and Technology, 2013, 93(9): 12-19.
    [20] ZHANG Ming-yi, LAI Yuan-ming, PEI Wan-sheng, et al. Effect of inclination angle on the heat transfer performance of a two-phase closed thermosyphon under low-temperature conditions[J]. Journal of Cold Regions Engineering, 2014, 28(4): 1-11.
    [21] JIN Long, WANG Shuang-jie, CHEN Jian-bing, et al. Study on the height effect of highway embankments in permafrost regions[J]. Cold Regions Science and Technology, 2012, 83-84: 122-130. doi: 10.1016/j.coldregions.2012.07.006
    [22] 汪双杰. 高原多年冻土区公路路基稳定及预测技术研究[D]. 南京: 东南大学, 2005.

    WANG Shuang-jie. Study on highway subgrade stabilization and prediction technique in plateau permafrost region[D]. Nanjing: Southeast University, 2005. (in Chinese).
    [23] 刘戈, 汪双杰, 袁堃, 等. 尺度效应下冻土路基结构适应性及优化[J]. 中国公路学报, 2015, 28(12): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512004.htm

    LIU Ge, WANG Shuang-jie, YUAN Kun, et al. Adaptability and optimization of permafrost embankment structure under scale effect[J]. China Journal of Highway and Transport, 2015, 28(12): 17-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512004.htm
    [24] MA Wei, WEN Zhi, SHENG Yu, et al. Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment[J]. Canadian Geotechnical Journal, 2012, 49(9): 1005-1014. doi: 10.1139/t2012-058
    [25] 董元宏, 赖远明, 陈武. 多年冻土区宽幅公路路基降温效果研究——一种L型热管-块碎石护坡复合路基[J]. 岩土工程学报, 2012, 34(6): 1043-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206014.htm

    DONG Yuan-hong, LAI Yuan-ming, CHEN Wu. Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1043-1049. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206014.htm
  • 加载中
图(16)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  142
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-10
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回