Differential settlement of widened subgrade in cold and high-altitude permafrost regions
-
摘要: 为了研究高寒高海拔多年冻土区拓宽路基面层吸热对下伏多年冻土温度与沉降的影响, 建立了基于热力耦合理论的差异沉降计算的有限元模型, 并利用实体工程监测数据对模型进行了修正, 分析了不同季节、不同填高与阴阳坡工况下拓宽侧路基差异沉降分布规律, 确定了多年冻土区最优路基拓宽位置。研究结果表明: 多年冻土区拓宽路基最大融深与沉降均出现在秋季, 10月份的变形最不利, 病害特征最突出, 其中4m填高路基第10年最大差异沉降为16.9cm, 分别为7、1、4月份沉降的1.1、1.4、1.7倍; 差异沉降与路基填高存在正相关性, 当路基填高分别为2、4、6 m时, 10年内路基的差异沉降分别为13.2、16.9、18.1cm; 阴坡侧拓宽路基的温度与沉降变化小于阳坡侧, 在10年内, 阳坡侧拓宽路基底面最大升温为1.3℃, 阴坡侧为0.6℃, 阳坡侧拓宽路基最大差异沉降为16.9cm, 阴坡侧为12.3cm; 即使阴坡侧拓宽, 差异沉降仍使拓宽路基顶面形成一个斜率为2%~3%的斜坡, 进而使路面产生较大附加应力, 最终造成结构层病害。Abstract: In order to study the influence of heat absorption of widened subgrade surface on underlying permafrost's temperature and settlement in cold and high-altitude permafrost regions, a finite element model computing the differential settlement of widening subgrade based on the thermal-mechanical coupled theory was established and corrected by the monitoring data of practical engineering, the differential settlement distributions under diverse seasons, different filling heights and working conditions at sunny and shady slope sides were studied, and the optimal widened location of subgrade in permafrost regions was determined. Research result shows that the maximum melting depth and settlement of widened subgrade appear in autumn, October is most unfavorable for subgrade settlement, and disease characteristics are remarkable. When the filling height of subgrade is 4 m, the maximum differential settlement of subgrade is16.9cm and 1.1, 1.4, 1.7times larger in October than in July, January and April within 10 years. Within 10 years, when the filling heights of subgrade are 2, 4 and 6 m respectively, thedifferential settlements are 13.2, 16.9 and 18.1 cm respectively, so the differential settlement increases with the increase of filling height. Within 10 years, the maximum rising temperature of subgrade is 1.3 ℃ at sunny slope side and 0.6 ℃ at shady slope side, the maximum differential settlement of subgrade is 16.9cm at sunny slope side and 12.3 cm at shady slope side, so the temperature and settlement of widened subgrade change smaller at shady slope side than at sunny slope side. Even widening subgrade at shady slope side, the differential settlement of subgrade still results in a 2%-3% slope at the top of subgrade, the slope will result in the great additional stress of pavement, so that the diseases of pavement structure occur.
-
表 1 热传导参数
Table 1. Parameters of heat conduction
表 2 沉降计算参数
Table 2. Calculating parameters of settlement
表 3 计算模型边界条件
Table 3. Boundary conditions of calculating model
-
[1] 刘维正, 徐林荣, 左珅, 等. 桩筏地基加固对紧邻既有线路基的影响[J]. 交通运输工程学报, 2015, 15(3): 16-26. doi: 10.3969/j.issn.1671-1637.2015.03.004LIU Wei-zheng, XU Lin-rong, ZUO Shen, et al. Influence of pile-raft foundation reinforcement on subgrade of adjacent existing railway[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 16-26. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.03.004 [2] 傅珍, 王选仓, 李宏志, 等. 高速公路拓宽路基差异沉降[J]. 交通运输工程学报, 2010, 10(6): 25-31. doi: 10.3969/j.issn.1671-1637.2010.06.005FU Zhen, WANG Xuan-cang, LI Hong-zhi, et al. Differentia settlement of widening subgrade for expressway[J]. Journal of Traffic and Transportation Engineering, 2010, 10(6): 25-31. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.06.005 [3] 傅珍, 王选仓, 陈星光, 等. 拓宽路基差异沉降特性和影响因素[J]. 交通运输工程学报, 2007, 7(1): 54-57. doi: 10.3321/j.issn:1671-1637.2007.01.012FU Zhen, WANG Xuan-cang, CHEN Xing-guang, et al. Differential settlement characteristics and influencing factors of widening subgrade[J]. Journal of Traffic and Transportation Engineering, 2007, 7(1): 54-57. (in Chinese). doi: 10.3321/j.issn:1671-1637.2007.01.012 [4] 吴瑞麟, 樊金山, 颜昌清, 等. 拓宽路基不同沉降形态下沥青路面结构仿真[J]. 华中科技大学学报: 自然科学版, 2012, 40(9): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201209018.htmWU Rui-lin, FAN Jin-shan, YAN Chang-qing, et al. Emulation on asphalt pavement structure of widened subgrade under different settlement patterns[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2012, 40(9): 76-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201209018.htm [5] 唐朝生, 刘义怀, 施斌, 等. 新老路基拼接中差异沉降的数值模拟[J]. 中国公路学报, 2007, 20(2): 13-17. doi: 10.3321/j.issn:1001-7372.2007.02.003TANG Chao-sheng, LIU Yi-huai, SHI Bin, et al. Numerical simulation on differential settlement of jointing of new and old roadbed[J]. China Journal of Highway and Transport, 2007, 20(2): 13-17. (in Chinese). doi: 10.3321/j.issn:1001-7372.2007.02.003 [6] 翁效林, 张留俊. 拓宽路基下软土地基工后沉降预测[J]. 长安大学学报: 自然科学版, 2011, 31(1): 17-21. doi: 10.3969/j.issn.1671-8879.2011.01.004WENG Xiao-lin, ZHANG Liu-jun. Settlement prediction of soft subgrade under broaden embankment[J]. Journal of Chang'an University: Natural Science Edition, 2011, 31(1): 17-21. (in Chinese). doi: 10.3969/j.issn.1671-8879.2011.01.004 [7] 黄写勤, 高志伟, 王选仓. 高速公路拓宽路基差异沉降处治措施[J]. 筑路机械与施工机械化, 2013, 30(8): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201308037.htmHUANG Xie-qin, GAO Zhi-wei, WANG Xuan-cang. Treatment measures for subgrade differential settlement of highway widening[J]. Road Machinery and Construction Mechanization, 2013, 30(8): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201308037.htm [8] LAI Yuan-ming, WANG Qiu-sheng, NIU Fu-jun, et al. Three-dimensional nonlinear analysis for temperature characteristic of ventilated embankment in cold permafrost region[J]. Cold Regions Science and Technology, 2004, 38(2/3): 165-184. [9] LIU Zhi-qiang, LAI Yuan-ming. Numerical analysis for the ventilated embankment with thermal insulation layer in QingTibetan Railway[J]. Cold Regions Science and Technology, 2005, 42(3): 177-184. doi: 10.1016/j.coldregions.2005.01.003 [10] ZHANG Ming-yi, LAI Yuan-ming, DONG Yuan-hong. Three-dimensional nonlinear analysis for the cooling characteristics of crushed-rock interlayer embankment with ventilated duct along the Qinghai-Tibet Expressway in permafrost regions[J]. Journal of Cold Regions Engineering, 2010, 24(4): 126-141. doi: 10.1061/(ASCE)CR.1943-5495.0000018 [11] YU Qi-hao, NIU Fu-jun, PAN Xi-cai, et al. Investigation of embankment with temperature-controlled ventilation along the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2008, 53(2): 193-199. [12] MU Yan-hu, MA Wei, WU Qing-bai, et al. Cooling processes and effects of crushed rock embankment along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2012, 78(4): 107-114. [13] MA Wei, WU Qing-bai, LIU Yong-zhi, et al. Analysis of the cooling mechanism of a crushed rock embankment in warm and lower temperature permafrost regions along the Qinghai-Tibet Railway[J]. Sciences in Cold and Arid Regions, 2008(1): 14-25. [14] 黄琴龙, 凌建明, 钱劲松. 新老路基工后差异变形对路面结构的影响[J]. 同济大学学报: 自然科学版, 2005, 33(6): 759-762. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200506010.htmHUANG Qin-long, LING Jian-ming, QIAN Jin-song. Influence of pavement under discrepant deformation after construction between exiting subgrade and that to be widened[J]. Journal of Tongji University: Natural Science, 2005, 33(6): 759-762. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200506010.htm [15] 刘志强, 赖远明, 张明义, 等. 冻土路基的随机温度场[J]. 中国科学D辑: 地球科学, 2006, 36(6): 587-592. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200606010.htmLIU Zhi-qiang, LAI Yuan-ming, ZHANG Ming-yi, et al. Random temperature fields of embankment in cold regions[J]. Science in China Series D: Earth Sciences, 2006, 36(6): 587-592. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200606010.htm [16] 雷胜友, 李肖伦, 李洋, 等. 高速铁路路基下复合地基沉降计算方法[J]. 交通运输工程学报, 2015, 15(3): 9-15. doi: 10.19818/j.cnki.1671-1637.2015.03.002LEI Sheng-you, LI Xiao-lun, LI Yang, et al. Calculation method of composite foundation settlement under high-speed railway subgrade[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 9-15. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2015.03.002 [17] 黄志军, 赖远明, 李双洋, 等. 交通荷载作用下冻土路基动力响应分析[J]. 冰川冻土, 2012, 34(2): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201202019.htmHUANG Zhi-jun, LAI Yuan-ming, LI Shuang-yang, et al. Dynamic response of embankment in permafrost regions under traffic load[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 418-426. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201202019.htm [18] 张敏静, 罗强, 詹学启, 等. 高速铁路穿透型CFG桩复合地基沉降计算修正系数分析[J]. 岩土力学, 2013, 34(2): 519-525, 545. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302033.htmZHANG Min-jing, LUO Qiang, ZHAN Xue-qi, et al. Research on settlement calculation empirical coefficient of end-bearing CFG pile composite foundation[J]. Rock and Soil Mechanics, 2013, 34(2): 519-525, 545. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302033.htm [19] HERMANSSON. Simulation model for calculating pavement temperatures including maximum temperature[J]. Transportation Research Record, 2000(1699): 134-141. [20] 姚济敏, 谷良雷, 赵林, 等. 多年冻土区与季节冻土区地表反照率对比观测研究[J]. 气象学报, 2013, 71(1): 176-184. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201301015.htmYAO Ji-min, GU Liang-lei, ZHAO Lin, et al. Comparatively observational study of the surface albedo between the permafrost region and the seasonally frozen soil region[J]. Acta Meteorological Sinica, 2013, 71(1): 176-184. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201301015.htm [21] GU Liang-lei, YAO Ji-min, HU Ze-yong, et al. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J]. Atmospheric Research, 2015, 153: 553-564. [22] CHENG Guo-dong, SUN Zhi-zhong, NIU Fu-jun. Application of the roadbed cooling approach in Qinghai-Tibet Railway engineering[J]. Cold Regions Science and Technology, 2008, 53(3): 241-258. [23] HERMANSSON. Mathematical model for paved surface summer and winter temperature: comparison of calculated and measured temperatures[J]. Cold Regions Science and Technology, 2004, 40(2): 1-17.