留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车牵引变压器振动响应容限有限元分析

于金朋 宋青鹏 张明远 张继旺 刘小霞 张立民

于金朋, 宋青鹏, 张明远, 张继旺, 刘小霞, 张立民. 高速列车牵引变压器振动响应容限有限元分析[J]. 交通运输工程学报, 2016, 16(5): 42-48. doi: 10.19818/j.cnki.1671-1637.2016.05.005
引用本文: 于金朋, 宋青鹏, 张明远, 张继旺, 刘小霞, 张立民. 高速列车牵引变压器振动响应容限有限元分析[J]. 交通运输工程学报, 2016, 16(5): 42-48. doi: 10.19818/j.cnki.1671-1637.2016.05.005
YU Jin-peng, SONG Qing-peng, ZHANG Ming-yuan, ZHANG Ji-wang, LIU Xiao-xia, ZHANG Li-min. FEA of vibration response tolerance of traction transformer for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 42-48. doi: 10.19818/j.cnki.1671-1637.2016.05.005
Citation: YU Jin-peng, SONG Qing-peng, ZHANG Ming-yuan, ZHANG Ji-wang, LIU Xiao-xia, ZHANG Li-min. FEA of vibration response tolerance of traction transformer for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 42-48. doi: 10.19818/j.cnki.1671-1637.2016.05.005

高速列车牵引变压器振动响应容限有限元分析

doi: 10.19818/j.cnki.1671-1637.2016.05.005
基金项目: 

国家科技支撑计划项目 2013BAG24B02

详细信息
    作者简介:

    于金朋(1979-), 男, 河北唐山人, 中车唐山机车车辆有限公司高级工程师, 西南交通大学工学博士研究生, 从事高速列车系统集成与车辆动态设计研究

    张立民(1960-), 男, 辽宁昌图人, 西南交通大学研究员, 工学博士

  • 中图分类号: U211.3

FEA of vibration response tolerance of traction transformer for high-speed train

More Information
  • 摘要: 为保证高速列车车下设备结构的安全性, 基于振动响应容限仿真计算方法和米塞斯应力屈服准则, 运用有限元仿真模型对线性和非线性悬挂刚度下高速列车牵引变压器的振动响应容限进行研究。对牵引变压器沿纵向、横向、垂向同时加载, 得到响应应力最大的危险节点。对牵引变压器分别沿纵向、横向、垂向进行加载, 得到危险节点的6个应力分量和不同方向振幅的关系, 并基于叠加原理, 得到纵向、横向、垂向同时加载下危险节点应力分量和不同方向振幅的关系。基于求得的米塞斯应力函数与米塞斯应力屈服准则, 得到振动响应容限。分析结果表明: 基于叠加原理, 可以运用MATLAB替代ANSYS对线性悬挂刚度下的振动响应容限进行仿真计算; 线性与非线性悬挂刚度下的振动响应容限曲面间存在一条垂向位移等值曲线, 当横向位移与纵向位移组成的坐标点位于垂向位移等值曲线在平面内的投影线以下时, 线性悬挂刚度下垂向位移的振动响应容限比相应非线性悬挂刚度下的振动响应容限大, 当横向位移与纵向位移组成的坐标点位于垂向位移等值曲线在平面内的投影线以上时, 线性悬挂刚度下垂向位移的振动响应容限比相应非线性悬挂刚度下的振动响应容限小。

     

  • 图  1  车体有限元模型

    Figure  1.  Finite element model of car body

    图  2  牵引变压器有限元模型

    Figure  2.  Finite element model of traction transformer

    图  3  仿真计算流程

    Figure  3.  Flow of simulated calculation

    图  4  牵引变压器振动危险节点位置

    Figure  4.  Location of vibration dangerous node of traction transformer

    图  5  振动响应容限三维空间

    Figure  5.  Three-dimensional space of vibration response tolerance

    图  6  非线性悬挂刚度曲线

    Figure  6.  Curve of nonlinear suspension stiffness

    图  7  非线性悬挂刚度下牵引变压器振动响应容限曲面

    Figure  7.  Vibration response tolerance surface of traction transformer under nonlinear suspension stiffness

    图  8  线性与非线性悬挂刚度下牵引变压器振动响应容限曲面对比

    Figure  8.  Comparison of vibration response tolerance surfaces between linear and nonlinear suspension stiffnesses

    图  9  线性与非线性悬挂刚度下振动响应容限曲面交线投影

    Figure  9.  Projection intersection line for vibration response tolerance surfaces under linear and nonlinear suspension stiffnesses

    表  1  模态数据对比

    Table  1.   Comparison of modal data

    下载: 导出CSV

    表  2  计算工况

    Table  2.   Calculation cases

    下载: 导出CSV

    表  3  危险节点的SVON计算值与仿真值对比

    Table  3.   Comparison between calculated and simulated SVONof dangerous node

    下载: 导出CSV

    表  4  系数a1~a10的取值

    Table  4.   Values of coefficients a1-a10

    下载: 导出CSV
  • [1] 周劲松, 张伟, 孙文静, 等. 铁道车辆弹性车体动力吸振器减振分析[J]. 中国铁道科学, 2009, 30(3): 86-90. doi: 10.3321/j.issn:1001-4632.2009.03.016

    ZHOU Jin-song, ZHANG Wei, SUN Wen-jing, et al. Vibration reduction analysis of the dynamic vibration absorber on the flexible carbody of railway vehicles[J]. China Railway Science, 2009, 30(3): 86-90. (in Chinese). doi: 10.3321/j.issn:1001-4632.2009.03.016
    [2] 陈亮, 康洪军, 张立民. 牵引变压器连接刚度对车体与设备振动影响分析[J]. 铁道车辆, 2012, 50(8): 4-6, 29. doi: 10.3969/j.issn.1002-7602.2012.08.002

    CHEN Liang, KANG Hong-jun, ZHANG Li-min. Analysis of the effect of the connection stiffness of the traction transformer on vibration of carbody and equipment[J]. Rolling Stock, 2012, 50(8): 4-6, 29. (in Chinese). doi: 10.3969/j.issn.1002-7602.2012.08.002
    [3] 祝丽花, 杨庆新, 闫荣格, 等. 电力变压器铁心磁致伸缩力的数值计算[J]. 变压器, 2012, 49(6): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201206006.htm

    ZHU Li-hua, YANG Qing-xin, YAN Rong-ge, et al. Numerical calculation of magnetostrictive stress of core in power transformer[J]. Transformer, 2012, 49(6): 9-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201206006.htm
    [4] 张家雄, 郭海霞, 吴作伟. 车下悬挂设备布局优化[J]. 重庆工学院学报: 自然科学, 2008, 22(7): 6-8, 21. doi: 10.3969/j.issn.1674-8425-B.2008.07.002

    ZHANG Jia-xiong, GUO Hai-xia, WU Zuo-wei. Layout optimization of bottom suspension equipment of automobile[J]. Journal of Chongqing Institute of Technology: Natural Science, 2008, 22(7): 6-8, 21. (in Chinese). doi: 10.3969/j.issn.1674-8425-B.2008.07.002
    [5] 陈林, 张立民, 段合朋. 基于环境激励的车辆系统工作模态试验分析[J]. 噪声与振动控制, 2008, 28(6): 81-84. doi: 10.3969/j.issn.1006-1355.2008.06.021

    CHEN Lin, ZHANG Li-min, DUAN He-peng. Modal testing and analysis of the vehicle system based on ambient excitation[J]. Noise and Vibration Control, 2008, 28(6): 81-84. (in Chinese). doi: 10.3969/j.issn.1006-1355.2008.06.021
    [6] 张远亮, 张立民. 某动车牵引变压器振动及传递分析[J]. 铁路机车车辆, 2015, 35(1): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201501008.htm

    ZHANG Yuan-liang, ZHANG Li-min. Analysis of vibration and vibration transmission for EMU traction transformer[J]. Railway Locomotive and Car, 2015, 35(1): 32-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201501008.htm
    [7] FOO E, GOODALL R M. Active suspension control of flexible-bodied railway vehicles using electro-hydraulic and electro-magnetic actuators[J]. Control Engineering Practice, 2000, 8(5): 507-518. doi: 10.1016/S0967-0661(99)00188-4
    [8] ZHOU J, GOODALL R M, REN L, et al. Influences of car body vertical flexibility on ride quality of passenger railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(5): 461-471. doi: 10.1243/09544097JRRT272
    [9] 吴会超, 邬平波, 曾京, 等. 车下设备对车体振动的影响[J]. 交通运输工程学报, 2012, 12(5): 50-56. http://transport.chd.edu.cn/article/id/201205007

    WU Hui-chao, WU Ping-bo, ZENG Jing, et al. Influence of equipment under car on carbody vibration[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 50-56. (in Chinese). http://transport.chd.edu.cn/article/id/201205007
    [10] 徐凤妹, 劳世定. 客车车下设备吊挂方式的研究[J]. 铁道车辆, 2009, 47(4): 12-14, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200904005.htm

    XU Feng-mei, LAO Shi-ding. Research on the hanging mode of equipment under passenger cars[J]. Rolling Stock, 2009, 47(4): 12-14, 38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200904005.htm
    [11] BRUNI S, COLLINA A. Modelling the viscoelastic behaviour of elastomeric components: an application to the simulation of train-track interaction[J]. Vehicle System Dynamics, 2000, 34(4): 283-301. doi: 10.1076/vesd.34.4.283.2061
    [12] SEDLACZEK K, DRONKA S, RAUH J. Advanced modular modelling of rubber bushings for vehicle simulations[J]. Vehicle System Dynamics, 2011, 49(5): 741-759. doi: 10.1080/00423111003739806
    [13] GIL-NEGRETE N, VIOLAS J, KARI L. A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code[J]. Journal of Sound and Vibration, 2006, 296(4-5): 757-776.
    [14] LIN T R, FARAG N H, PAN J. Evaluation of frequency dependent rubber mount stiffness and damping by impact test[J]. Applied Acoustics, 2005, 66(7): 829-844.
    [15] 陈宏, 袁浩东, 张帅伟, 等. 基于振动能量的设备状态评价方法研究[J]. 机械设计与制造, 2013(2): 127-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201302040.htm

    CHEN Hong, YUAN Hao-dong, ZHANG Shuai-wei, et al. Research on the condition assessment method of equipment based on vibration energy[J]. Machinery Design and Manufacture, 2013(2): 127-130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201302040.htm
    [16] 邱飞力. 车下设备与车体间振动传递关系研究[D]. 成都: 西南交通大学, 2011.

    QIU Fei-li. The study of vibration transfer relationship between railway vehicle and hanging equipment[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese).
    [17] SUN Wen-jing, GONG Dao, ZHOU Jin-song, et al. Influences of suspended equipment under car body on high-speed train ride quality[J]. Procedia Engineering, 2011, 16(1): 812-817.
    [18] 王忆佳, 曾京, 吴会超, 等. 车下有源振动设备对车体振动影响的试验研究[J]. 现代制造工程, 2013(9): 50-54, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201309013.htm

    WANG Yi-jia, ZENG Jing, WU Hui-chao, et al. The test study on the influence of active vibration equipments to carbody vibration[J]. Modern Manufacturing Engineering, 2013(9): 50-54, 58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201309013.htm
    [19] 阳光武, 高一丁, 万波. 车体一阶垂向弯曲频率解析分析[J]. 铁道车辆, 2015, 53(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201501002.htm

    YANG Guang-wu, GAO Yi-ding, WAN Bo. Analytic analysis of the first order vertical bending frequency of carbodies[J]. Rolling Stock, 2015, 53(1): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201501002.htm
    [20] 曾京, 罗仁. 考虑车体弹性效应的铁道客车系统振动分析[J]. 铁道学报, 2007, 29(6): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200706005.htm

    ZENG Jing, LUO Ren. Vibration analysis of railway passenger car systems by considering flexible carbody effect[J]. Journal of the China Railway Society, 2007, 29(6): 19-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200706005.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1962
  • HTML全文浏览量:  107
  • PDF下载量:  1658
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-15
  • 刊出日期:  2016-10-25

目录

    /

    返回文章
    返回