留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆管翼缘钢-混凝土新型组合梁极限抗弯承载力与延性

朱经纬 王春生 翟晓亮 刘浩 崔志强

朱经纬, 王春生, 翟晓亮, 刘浩, 崔志强. 圆管翼缘钢-混凝土新型组合梁极限抗弯承载力与延性[J]. 交通运输工程学报, 2018, 18(1): 29-41. doi: 10.19818/j.cnki.1671-1637.2018.01.003
引用本文: 朱经纬, 王春生, 翟晓亮, 刘浩, 崔志强. 圆管翼缘钢-混凝土新型组合梁极限抗弯承载力与延性[J]. 交通运输工程学报, 2018, 18(1): 29-41. doi: 10.19818/j.cnki.1671-1637.2018.01.003
ZHU Jing-wei, WANG Chun-sheng, ZHAI Xiao-liang, LIU Hao, CUI Zhi-qiang. Ultimate flexural strength and ductility of steel and concrete composite girder with circle tubular flange[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 29-41. doi: 10.19818/j.cnki.1671-1637.2018.01.003
Citation: ZHU Jing-wei, WANG Chun-sheng, ZHAI Xiao-liang, LIU Hao, CUI Zhi-qiang. Ultimate flexural strength and ductility of steel and concrete composite girder with circle tubular flange[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 29-41. doi: 10.19818/j.cnki.1671-1637.2018.01.003

圆管翼缘钢-混凝土新型组合梁极限抗弯承载力与延性

doi: 10.19818/j.cnki.1671-1637.2018.01.003
基金项目: 

国家自然科学基金项目 51378070

交通运输部应用基础研究项目 2014 319 812 080

中央高校基本科研业务费专项资金项目 310821153501

中央高校基本科研业务费专项资金项目 310821153401

中央高校基本科研业务费专项资金项目 310821153314

中央高校基本科研业务费专项资金项目 2014G1502037

陕西省交通科技项目 12-20K

详细信息
    作者简介:

    朱经纬(1986-), 男, 黑龙江齐齐哈尔人, 长安大学工学博士研究生, 从事钢桥与组合结构桥梁研究

    王春生(1972-), 男, 黑龙江绥化人, 长安大学教授, 工学博士

  • 中图分类号: U448.38

Ultimate flexural strength and ductility of steel and concrete composite girder with circle tubular flange

More Information
  • 摘要: 为研究圆管翼缘组合梁的抗弯性能, 进行了3根圆管翼缘组合梁静力加载抗弯破坏性试验, 分析了试验梁的抗弯破坏过程与破坏特征; 考虑混凝土损伤塑性本构及栓钉滑移与断裂, 建立了圆管翼缘组合梁非线性数值模型, 基于试验结果分析了数值模型的适用性; 以钢梁下翼缘宽度、混凝土翼板厚度与圆管管径为主要结构参数, 计算了48根正交设计的圆管翼缘数值模型组合梁的力学性能; 依据试验梁与数值模型梁的抗弯受力性能, 提出了基于简化塑性理论的圆管翼缘组合梁极限抗弯承载力计算公式; 应用数值模型梁位移延性系数计算结果, 回归得到了圆管翼缘组合梁位移延性系数计算公式。计算结果表明: 数值模型组合梁与试验梁承载力比值为0.99~1.03, 挠度比值为0.87~1.09, 因此, 弯矩-挠度计算曲线与试验曲线吻合良好, 可采用数值模型组合梁准确模拟圆管翼缘组合梁的抗弯全过程受力行为; 圆管翼缘组合梁极限抗弯承载力随钢梁下翼缘宽度、混凝土翼板厚度的增大而增大, 随圆管管径的改变变化较小, 位移延性系数随混凝土翼板厚度与圆管管径平方的增大呈线性增大, 随钢梁下翼缘宽度的增大呈线性减小; 不同塑性发展程度的各类模型梁位移延性系数为3.16~7.19, 体现了较好的延性; 采用极限抗弯承载力简化计算公式与圆管翼缘数值模型组合梁计算的极限抗弯承载力比值为0.91~1.09, 平均比值为0.98, 因此, 公式计算结果准确; 为使圆管翼缘组合梁具有一定延性, 建议位移延性系数大于3.5。

     

  • 图  1  钢板梁

    Figure  1.  Steel plate girders

    图  2  试验梁构造(单位: mm)

    Figure  2.  Construction of test girder (unit: mm)

    图  3  加载装置

    Figure  3.  Loading device

    图  4  典型破坏形态

    Figure  4.  Typical failure mode

    图  5  跨中弯矩-挠度曲线

    Figure  5.  Mid-span bending moment-deflection curves

    图  6  拉伸软化模型

    Figure  6.  Tension softening model

    图  7  剪力-滑移曲线

    Figure  7.  Shear-slippage curves

    图  8  有限元模型

    Figure  8.  Finite element model

    图  9  有限元计算与试验弯矩-挠度曲线对比

    Figure  9.  Comparison of bending moment-deflection curves between FEM and experiment

    图  10  翼缘宽度对极限抗弯承载力的影响

    Figure  10.  Effect of width of lower flange on ultimate flexural bearing capacity

    图  11  模型梁G2-168-bt弯矩-挠度曲线

    Figure  11.  Bending moment-deflection curves of G2-168-bt

    图  12  混凝土翼板厚度对极限抗弯承载力的影响

    Figure  12.  Effect of depth of concrete flange on ultimate flexural bearing capacity

    图  13  模型梁Gn-133-200弯矩-挠度曲线

    Figure  13.  Bending moment-deflection curves for Gn-133-200

    图  14  圆管管径对极限抗弯承载力的影响

    Figure  14.  Effect of diameter of circle tube on ultimate flexural bearing capacity

    图  15  模型梁G2-R-250弯矩-挠度曲线

    Figure  15.  Bending moment-deflection curves for G2-R-250

    图  16  塑性中性轴在混凝土翼板内时理论计算图式

    Figure  16.  Theoretical calculation diagram when plastic neutral axis is in concrete flange

    图  17  塑性中性轴在圆钢管内时理论计算图式

    Figure  17.  Theoretical calculation diagram when plastic neutral axis is in circle tube

    图  18  塑性中性轴在腹板内时理论计算图示

    Figure  18.  Theoretical calculation diagram when plastic neutral axis is in web

    图  19  下翼缘宽度、圆管管径平方与翼板厚度对Cd的影响

    Figure  19.  Influences of lower flange width, diameter square of circle tube and concrete slab thickness on Cd

    表  1  试验梁设计参数

    Table  1.   Design parameters of test girders

    下载: 导出CSV

    表  2  材性性能

    Table  2.   Material properties

    下载: 导出CSV

    表  3  主要力学特征指标

    Table  3.   Main mechanics characteristic indexes

    下载: 导出CSV

    表  4  屈服和承载力极限状态下有限元计算与试验结果比较

    Table  4.   Comparison of FE computation and test results at yielding and bearing ultimate states

    下载: 导出CSV

    表  5  模型梁构造参数与抗弯承载力

    Table  5.   Structural parameters and flexural bearing capacities of model girders

    下载: 导出CSV

    表  6  模型梁位移延性系数

    Table  6.   Displacement ductility factors of model girders

    下载: 导出CSV
  • [1] 王春生, 段兰, 王继明, 等. 基于混合设计的高性能钢梁抗弯性能及延性试验[J]. 中国公路学报, 2012, 25 (2): 81-89. doi: 10.3969/j.issn.1001-7372.2012.02.014

    WANG Chun-sheng, DUAN Lan, WANG Ji-ming, et al. Bending behavior and ductility test of high peformance steel beam based on hybrid design[J]. China Journal of Highway and Transport, 2012, 25 (2): 81-89. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.02.014
    [2] MERTZ D R. Trends in design and construction of steel highway bridges in the United States[J]. Progress in Structural Engineering and Materials, 2001, 3 (1): 5-12. doi: 10.1002/pse.56
    [3] NIE Jian-guo, ZHU Li, TAO Mu-xuan, et al. Shear strength of trapezoidal corrugated steel webs[J]. Journal of Constructional Steel Research, 2013, 85: 105-115. doi: 10.1016/j.jcsr.2013.02.012
    [4] 陈华婷, 张磊, 黄艳. 美国高性能钢工字形钢板梁新型截面形式研究[J]. 世界桥梁, 2011 (5): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201105010.htm

    CHEN Hua-ting, ZHANG Lei, HUANG Yan. Research of innovative section forms of I-shape high performance steel plate beam in the United States[J]. World Bridges, 2011 (5): 35-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201105010.htm
    [5] 周绪红, 孔祥福, 候健, 等. 波纹钢腹板组合箱梁抗剪受力性能[J]. 中国公路学报, 2007, 20 (2): 77-82. doi: 10.3321/j.issn:1001-7372.2007.02.015

    ZHOU Xu-hong, KONG Xiang-fu, HOU Jian, et al. Shear mechanical property of composite box girder with corrugated steel webs[J]. China Journal of Highway and Transport, 2007, 20 (2): 77-82. (in Chinese). doi: 10.3321/j.issn:1001-7372.2007.02.015
    [6] 张峰, 李术才, 李宏江, 等. 波形钢腹板内衬混凝土部位抗剪性能[J]. 交通运输工程学报, 2016, 16 (1): 16-24. doi: 10.3969/j.issn.1671-1637.2016.01.003

    ZHANG Feng, LI Shu-cai, LI Hong-jiang, et al. Shearing performances of corrugated steel webs encased with concrete[J]. Journal of Traffic and Trasportation Engineering, 2016, 16 (1): 16-24. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.01.003
    [7] SAUSE R. Innovative steel bridge girders with tubular flanges[J]. Structure and Infrastructure Engineering, 2015, 11 (4): 450-465. doi: 10.1080/15732479.2014.951866
    [8] 王春生, 朱经纬, 翟晓亮, 等. 双管翼缘钢-混凝土新型组合梁抗弯性能试验[J]. 中国公路学报, 2017, 30 (3): 147-158. doi: 10.3969/j.issn.1001-7372.2017.03.016

    WANG Chun-sheng, ZHU Jing-wei, ZHAI Xiao-liang, et al. Flexural behavior experiment of steel and concrete composite girder with double tubular flanges[J]. China Journal of Highway and Transport, 2017, 30 (3): 147-158. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.016
    [9] DONG Jun, SAUSE R. Flexural strength of tubular flange girders[J]. Journal of Constructional Steel Research, 2009, 65 (3): 622-630. doi: 10.1016/j.jcsr.2008.02.019
    [10] HASSANEIN M F, KHAROOB O F. Flexural strength of hollow tubular flange plate girders with slender stiffened webs under mid-span concentrated loads[J]. Thin-Walled Structures, 2013, 69: 18-28. doi: 10.1016/j.tws.2013.03.016
    [11] KIM B G, SAUSE R. Study of two-span continuous tubular flange girder demonstration bridge[R]. Bethlehem: Lehigh University, 2008.
    [12] 王春生, 常全禄, 翟晓亮, 等. 管翼缘组合梁桥设计与结构分析[J]. 钢结构, 2015, 30 (6): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201506005.htm

    WANG Chun-sheng, CHANG Quan-lu, ZHAI Xiao-liang, et al. Design and structure analysis of tubular flange composite girder bridge[J]. Steel Construction, 2015, 30 (6): 17-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201506005.htm
    [13] KIM B G, SAUSE R. Lateral torsional buckling strength of tubular flange girders[J]. Journal of Structural Engineering, 2008, 134 (6): 902-910. doi: 10.1061/(ASCE)0733-9445(2008)134:6(902)
    [14] SAUSE R, KIM B G, WIMER M R. Experimental study of tubular flange girders[J]. Journal of Structural Engineering, 2008, 134 (3): 384-392. doi: 10.1061/(ASCE)0733-9445(2008)134:3(384)
    [15] WANG C S, ZHAI X L, DUAN L, et al. Flexural limit load capacity test and analysis for steel and concrete composite beams with tubular up-flanges[C]//SHEN Z Y, CHEN Y Y, ZHAO X Z. Tubular Structures XII: Proceedings of the 12th International Symposium on Tubular Structures. Boca Raton: CRC Press, 2008: 413-420.
    [16] 王艳丽, 王春生, 翟晓亮, 等. 带管翼缘的钢-混凝土组合梁抗弯性能试验研究[J]. 交通运输工程学报, 2008, 8 (6): 63-69. doi: 10.3321/j.issn:1671-1637.2008.06.013

    WANG Yan-li, WANG Chun-sheng, ZHAI Xiao-liang, et al. Experimental research of bending capacity for steel and concrete composite girder with concrete filled tubular upflange[J]. Journal of Traffic and Trasportation Engineering, 2008, 8 (6): 63-69. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.06.013
    [17] 朱经纬. 新型管翼缘组合梁抗弯性能试验研究[D]. 西安: 长安大学, 2012.

    ZHU Jing-wei. Experimental investigation of bending behavior for the new style tubular flange composite girder[D]. Xi'an: Chang'an University, 2012. (in Chinese).
    [18] LUBLINER J, OLIVER J, OLLER S, et al. A plasticdamage model for concrete[J]. International Journal of Solids and Structures, 1989, 25 (3): 299-326. doi: 10.1016/0020-7683(89)90050-4
    [19] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124 (8): 892-900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    [20] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982 (1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201908018.htm

    GUO Zhen-hai, ZHANG Xiu-qin, ZHANG Da-cheng, et al. Experimental investigation of the complete stresss-strain curve of concrete[J]. Journal of Building Structures, 1982 (1): 1-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201908018.htm
    [21] BUTTRY K E. Behavior of stud shear connectors in lightweight and normal-weight concrete[R]. Columbia: University of Missouri, 1965.
    [22] OLLGAARD J G, SLUTTER R G, FISHER J W, et al. Shear strength of stud connectors in lightweight and normalweight concrete[J]. AISC Engineering Journal, 1971, 8 (2): 55-64.
    [23] AN Li, CEDERWLL K. Push-out tests on studs in high strength and normal strength concrete[J]. Journal of Constructional Steel Research, 1996, 36 (1): 15-29.
    [24] XUE Wei-chen, DING Min, WANG Hua, et al. Static behavior and theoretical model of stud shear connectors[J]. Journal of Bridge Engineering, 2008, 13 (6): 623-634. doi: 10.1061/(ASCE)1084-0702(2008)13:6(623)
    [25] JOHNSON R P, MOLENSTRA N. Partial shear connection in composite beams for buildings[J]. Proceedings of the Institution of Civil Engineers, 1991, 91 (4): 679-704. doi: 10.1680/iicep.1991.17485
    [26] LORENC W, KUBICA E. Behavior of composite beams prestressed with external tendons: experimental study[J]. Journal of Constructional Steel Research, 2006, 62 (12): 1353-1366. doi: 10.1016/j.jcsr.2006.01.007
    [27] OEHLERS D J, SVED G. Composite beams with limitedslip-capacity shear connectors[J]. Journal of Structural Engineering, 1995, 121 (6): 932-938. doi: 10.1061/(ASCE)0733-9445(1995)121:6(932)
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  104
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-02
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回