留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双线性强化隧道和桩孔三剪弹塑性解

赵均海 张磊 张常光 曹雪叶

赵均海, 张磊, 张常光, 曹雪叶. 双线性强化隧道和桩孔三剪弹塑性解[J]. 交通运输工程学报, 2018, 18(1): 51-60. doi: 10.19818/j.cnki.1671-1637.2018.01.005
引用本文: 赵均海, 张磊, 张常光, 曹雪叶. 双线性强化隧道和桩孔三剪弹塑性解[J]. 交通运输工程学报, 2018, 18(1): 51-60. doi: 10.19818/j.cnki.1671-1637.2018.01.005
ZHAO Jun-hai, ZHANG Lei, ZHANG Chang-guang, CAO Xue-ye. Elastic-plastic solutions of bilinear strain-hardening tunnel and pile cavity based on tri-shear failure criterion[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 51-60. doi: 10.19818/j.cnki.1671-1637.2018.01.005
Citation: ZHAO Jun-hai, ZHANG Lei, ZHANG Chang-guang, CAO Xue-ye. Elastic-plastic solutions of bilinear strain-hardening tunnel and pile cavity based on tri-shear failure criterion[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 51-60. doi: 10.19818/j.cnki.1671-1637.2018.01.005

双线性强化隧道和桩孔三剪弹塑性解

doi: 10.19818/j.cnki.1671-1637.2018.01.005
基金项目: 

国家自然科学基金项目 51508028

国家自然科学基金项目 41202191

陕西省社会发展科技攻关项目 2015SF272

中国博士后科学基金项目 2016T90879

中国博士后科学基金项目 2014M562357

中央高校基本科研业务费专项资金项目 310828173402

详细信息
    作者简介:

    赵均海(1960-), 男, 陕西蓝田人, 长安大学教授, 工学博士, 从事结构工程和岩土力学研究

  • 中图分类号: U452

Elastic-plastic solutions of bilinear strain-hardening tunnel and pile cavity based on tri-shear failure criterion

More Information
  • 摘要: 将隧道和桩孔简化为厚壁圆筒, 基于三剪强度准则和双线性强化模型, 考虑材料的应变强化和中间主应力效应, 推导了厚壁圆筒在均匀内外压作用下的弹塑性极限解, 并给出恒定外压条件下塑性区半径与内压的关系式, 分析了强化模量系数、半径比、中间主应力与材料强度拉压异性对厚壁圆筒弹塑性极限解的影响规律。研究结果表明: 所得弹塑性极限解克服了Tresca屈服准则与Mises屈服准则未考虑拉压异性, Tresca屈服准则与Mohr-Coulomb屈服准则未考虑中间主应力与双剪强度理论极限解存在滑移面突变现象的不足; 弹塑性极限解均随半径比与中间主应力影响系数的增大而增大, 随拉压强度比的增大而减小, 外压对极限内压的影响程度随着拉压强度比的增大而减小; 当强化模量系数为0.1、半径比为2时, 考虑强化效应的塑性极限内压比不考虑时相对增大10%以上, 随着半径比增大到4, 塑性极限内压比不考虑强化效应时相对增大38%以上, 强化效应影响更加明显, 故对于存在应变强化效应的材料, 采用双线性强化模型的分析结果更接近工程实际; 当不考虑中间主应力与应变强化时, 土体的极限扩孔压力弹塑性极限解与Vesic解相差在0.02%以内, 当考虑了土体的中间主应力和应变强化效应后, 塑性区半径与内半径比为10时, 弹塑性极限解分别是Vesic解的1.06、1.81倍, 因此, 基于Vesic解的极限扩孔压力过于保守。

     

  • 图  1  双线性强化模型

    Figure  1.  Bilinear strain-hardening model

    图  2  厚壁圆筒受力模型

    Figure  2.  Mechanical model of thick-walled cylinder

    图  3  ps/σt0rb/ra与m的变化规律(α=1.0, b=0)

    Figure  3.  Variation rules of ps/σt0 with rb/raand m (α=1.0, b=0)

    图  4  ps/σt0随b与m的变化规律(α=1.0, rb/ra=2)

    Figure  4.  Variation rules of ps/σt0 with band m (α=1.0, rb/ra=2)

    图  5  ps/σt0随α与m的变化规律(b=0, rb/ra=2)

    Figure  5.  Variation rules of ps/σt0 withαand m (b=0, rb/ra=2)

    图  6  pe/σt0rb/ra与b的变化规律(α=1.0)

    Figure  6.  Variation rules of pe/σt0 with rb/raand b (α=1.0)

    图  7  pe/σt0rb/ra与α的变化规律(b=0)

    Figure  7.  Variation rules of pe/σt0 with rb/raandα (b=0)

    图  8  ps/σt0rb/ra与α的变化规律(b=0)

    Figure  8.  Variation rules of ps/σt0 with rb/raandα (b=0)

    图  9  pe/σt0随b与α的变化规律(rb/ra=2)

    Figure  9.  Variation rules of pe/σt0 with b andα (rb/ra=2)

    图  10  ps/σt0bα的变化规律(rb/ra=2)

    Figure  10.  Variation rules of ps/σt0 with b andα (rb/ra=2)

    图  11  pe/σt0随α与p2/σt0的变化规律(rb/ra=2)

    Figure  11.  Variation rules of pe/σt0 withαand p2/σt0 (rb/ra=2)

    图  12  ps/σt0随α与p2/σt0的变化规律(rb/ra=2)

    Figure  12.  Variation rules of ps/σt0 withαand p2/σt0 (rb/ra=2)

    图  13  柱孔扩张模型

    Figure  13.  Cylindrical cavity expansion model

    图  14  三剪理论解和Vesic理论解的比较

    Figure  14.  Comparison of solutions gained by tri-shear failure criterion and Vesic theory

  • [1] PANKAJ T. Elastic-plastic transition stresses in a transversely isotropic thick-walled cylinder subjected to internal pressure and steady-state temperature[J]. Thermal Science, 2009, 13 (4): 107-118. doi: 10.2298/TSCI0904107P
    [2] SHARMA R, AGGARWAL A K, SHARMA S, et al. Thermo creep transition in functionally graded thick-walled circular cylinder under external pressure[J]. ANNALS of Faculty Engineering Hunedoara—International Journal of Engineering, 2014, 12 (4): 335-342.
    [3] LVOV G, KOSTROMITSKAYA O. Effect of material damage on autofrettage of thick-walled cylinder[J]. Universal Journal of Mechanical Engineering, 2014, 2 (2): 44-48. doi: 10.13189/ujme.2014.020202
    [4] KAMAL S M, BORSAIKIA A C, DIXIT U S. Experimental assessment of residual stresses induced by the thermal autofrettage of thick-walled cylinders[J]. Journal of Strain Analysis for Engineering Design, 2016, 51 (2): 144-160. doi: 10.1177/0309324715616005
    [5] ZHAO Jun-hai, ZHAI Yue, JI Lin, et al. Unified solutions to the limit load of thick-walled vessels[J]. Journal of Pressure Vessel Technology, 2007, 129 (4): 670-675. doi: 10.1115/1.2767356
    [6] 殷有泉, 陈朝伟. 软化材料厚壁筒的解析解及其稳定性分析[J]. 力学学报, 2010, 42 (1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201001011.htm

    YIN You-quan, CHEN Zhao-wei. The analytical solutions of thick-walled cylinder of softening material and its stability[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42 (1): 56-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201001011.htm
    [7] LEU S Y. Analytical and numerical investigation of strain-hardeningviscoplastic thick-walled cylinders under internal pressure by using sequential limit analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(25-28): 2713-2722. doi: 10.1016/j.cma.2007.02.001
    [8] 张黎明, 王在泉, 孙辉, 等. 岩石卸荷破坏的变形特征及本构模型[J]. 煤炭学报, 2009, 34 (12): 1626-1631. doi: 10.3321/j.issn:0253-9993.2009.12.008

    ZHANG Li-ming, WANG Zai-quan, SUN Hui, et al. Failure characteristics and constitutive model of rock under unloading condition[J]. Journal of China Coal Society, 2009, 34 (12): 1626-1631. (in Chinese). doi: 10.3321/j.issn:0253-9993.2009.12.008
    [9] 薛钢, 宫旭辉, 王涛, 等. 10Ni5CrMoV钢循环塑性变形的力学本构关系[J]. 材料开发与应用, 2015, 30 (4): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY201504002.htm

    XUE Gang, GONG Xu-hui, WANG Tao, et al. Mechanical constitutive relation under cyclic loading of 10Ni5CrMoV steel[J]. Development and Application of Materials, 2015, 30 (4): 5-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY201504002.htm
    [10] BARTON P, ROMENSKI E. On computational modelling of strain-hardening material dynamics[J]. Communications in Computational Physics, 2012, 11 (5): 1525-1546. doi: 10.4208/cicp.171210.270511a
    [11] 黄晓莹, 陶俊林. 三种建筑钢筋材料高应变率下拉伸力学性能研究[J]. 工程力学, 2016, 33 (7): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201607025.htm

    HUANG Xiao-ying, TAO Jun-lin. Tensile mechanical properties research of three construction steel bars in high strain rate[J]. Engineering Mechanics, 2016, 33 (7): 184-189. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201607025.htm
    [12] TABESH M, LIU B, BOYD J G, et al. Analytical solution for the pseudoelastic response of a shape memory alloy thickwalled cylinder under internal pressure[J]. Smart Materials and Structures, 2013, 22 (9): 1-46.
    [13] 钱凌云, 刘全坤, 王成勇, 等. 厚壁圆筒自增强压力的优化分析[J]. 中国机械工程, 2012, 23 (4): 474-479. doi: 10.3969/j.issn.1004-132X.2012.04.024

    QIAN Ling-yun, LIU Quan-kun, WANG Cheng-yong, et al. Qptimization analysis of autofrettage pressure for thick walled cylinders[J]. China Mechanical Engineering, 2012, 23 (4): 474-479. (in Chinese). doi: 10.3969/j.issn.1004-132X.2012.04.024
    [14] 赵均海, 张永强, 廖红建, 等. 用统一强度理论求厚壁圆筒和厚壁球壳的极限解[J]. 应用力学学报, 2000, 17 (1): 157-161. doi: 10.3969/j.issn.1000-4939.2000.01.028

    ZHAO Jun-hai, ZHANG Yong-qiang. LIAO Hong-jian, et al. Unified limit solutions of thick wall cylinder and thick wall spherical shell with unified strength theory[J]. Chinese Journal of Applied Mechanics, 2000, 17 (1): 157-161. (in Chinese). doi: 10.3969/j.issn.1000-4939.2000.01.028
    [15] 常列珍, 潘玉田, 李魁武, 等. 理想弹塑性线性强化模型的身管残余应力分析[J]. 兵工学报, 2013, 34 (4): 385-391. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201304002.htm

    CHANG Lie-zhen, PAN Yu-tian, LI Kui-wu, et al. Residual stress analysis of gun barrel with bi-linear material model[J]. Acta Armamentarii, 2013, 34 (4): 385-391. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201304002.htm
    [16] 吴昊, 方秦, 张亚栋, 等. 深部巷道块系围岩分析模型及稳定性探讨[J]. 岩土工程学报, 2009, 31 (8): 1229-1235. doi: 10.3321/j.issn:1000-4548.2009.08.012

    WU Hao, FANG Qin, ZHANG Ya-dong, et al. Analytical model and stability of surrounding block rock mass around deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (8): 1229-1235. (in Chinese). doi: 10.3321/j.issn:1000-4548.2009.08.012
    [17] 曹黎娟, 赵均海, 魏雪英. 基于统一强度理论的灰土挤密桩应力分析[J]. 岩土力学, 2006, 27 (10): 1786-1790. doi: 10.3969/j.issn.1000-7598.2006.10.029

    CAO Li-juan, ZHAO Jun-hai, WEI Xue-ying. Stress analysis of lime-soil compacted pile based on the unified strength theory[J]. Rock and Soil Mechanics, 2006, 27 (10): 1786-1790. (in Chinese). doi: 10.3969/j.issn.1000-7598.2006.10.029
    [18] 曹雪叶, 赵均海, 张常光. 基于三剪统一强度准则的厚壁圆筒自增强分析[J]. 中国机械工程, 2017, 28 (1): 75-81. doi: 10.3969/j.issn.1004-132X.2017.01.013

    CAO Xue-ye, ZHAO Jun-hai, ZHANG Chang-guang. Autofrettage analysis of thick-walled cylinder based on triple-shear unified strength criterion[J]. China Mechanical Engineering, 2017, 28 (1): 75-81. (in Chinese). doi: 10.3969/j.issn.1004-132X.2017.01.013
    [19] 董陇军, 李夕兵. 岩石试验抗压、抗拉区间强度及代表值可信度研究[J]. 岩土工程学报, 2010, 32 (12): 1969-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201012030.htm

    DONG Long-jun, LI Xi-bing. Interval parameters and credibility of representative values of tensile and compression strength tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (12): 1969-1974. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201012030.htm
    [20] 张常光, 赵均海, 杜文超. 岩石中间主应力效应及强度理论研究进展[J]. 建筑科学与工程学报, 2014, 31 (2): 6-19. doi: 10.3969/j.issn.1673-2049.2014.02.003

    ZHANG Chang-guang, ZHAO Jun-hai, DU Wen-chao. Advances in rock for intermediate principal stress effect and strength theory[J]. Journal of Architecture and Civil Engineering, 2014, 31 (2): 6-19. (in Chinese). doi: 10.3969/j.issn.1673-2049.2014.02.003
    [21] 侯公羽, 李晶晶, 杨悦, 等. 基于幂强化本构模型的轴对称圆巷弹塑性解[J]. 岩土力学, 2014, 35 (1): 134-142. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401021.htm

    HOU Gong-yu, LI Jing-jing, YANG Yue, et al. Elastoplastic solution of axisymmetric circular tunnel based on power-hardening model[J]. Rock and Soil Mechanics, 2014, 35 (1): 134-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401021.htm
    [22] 胡小荣, 林太清. 三剪屈服准则及其在极限内压计算中的应用[J]. 中国有色金属学报, 2007, 17 (2): 207-215. doi: 10.3321/j.issn:1004-0609.2007.02.005

    HU Xiao-rong, LIN Tai-qing. Triple-shear yield criterion and its applications to limit pressures for thin and thick wall cylinders and thick wall spherical shells[J]. The Chinese Journal of Nonferrous Metals, 2007, 17 (2): 207-215. (in Chinese). doi: 10.3321/j.issn:1004-0609.2007.02.005
    [23] 朱倩, 赵均海, 张常光, 等. 双层组合厚壁圆筒弹脆塑性极限内压统一解[J]. 工程力学, 2015, 32 (9): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201509011.htm

    ZHU Qian, ZHAO Jun-hai, ZHANG Chang-guang, et al. Elastic-brittle-plastic unified solutions of limit internal pressure for double-layered combined thick-walled cylinder[J]. Engineering Mechanics, 2015, 32 (9): 68-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201509011.htm
    [24] 李艳, 赵均海, 张常光. 非饱和土条形地基太沙基极限承载力三剪统一解[J]. 岩土力学, 2015, 36 (11): 3128-3134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511012.htm

    LI Yan, ZHAO Jun-hai, ZHANG Chang-guang. Tripleshear unified solution of Terzaghi's ultimate bearing capacity for unsaturated soil foundation[J]. Rock and Soil Mechanics, 2015, 36 (11): 3128-3134. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511012.htm
    [25] 赵均海, 朱倩, 张常光, 等. 基于统一强度理论的组合厚壁圆筒弹塑性统一解[J]. 固体力学学报, 2014, 35 (1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201401009.htm

    ZHAO Jun-hai, ZHU Qian, ZHANG Chang-guang, et al. Elastic-plastic unified solutions for combined thick wall cylinder based on unified strength theory[J]. Chinese Journal of Solid Mechanics, 2014, 35 (1): 63-70. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201401009.htm
    [26] 林太清, 胡小荣. 基于三剪统一强度准则的厚壁圆筒极限承压分析[J]. 福州大学学报: 自然科学版, 2006, 34 (5): 727-731. doi: 10.3969/j.issn.1000-2243.2006.05.024

    LIN Tai-qing, HU Xiao-rong. Limit pressures for thick wall cylinders based on the triple shear unified failure criterion[J]. Journal of Fuzhou University: Natural Science, 2006, 34 (5): 727-731. (in Chinese). doi: 10.3969/j.issn.1000-2243.2006.05.024
    [27] HUANG X P. A generalautofrettage model of a thick-walled cylinder based on tensile-compressive stress-strain curve of a material[J]. Journal of Strain Analysis for Engineering Design, 2005, 40 (6): 599-607. doi: 10.1243/030932405X16070
    [28] 李铀, 李锶, 白世伟. 理想弹塑性厚壁圆筒弹塑性应力场再研究[J]. 岩石力学与工程学报, 2002, 21 (6): 897-899. doi: 10.3321/j.issn:1000-6915.2002.06.027

    LI You, LI Si, BAI Shi-wei. Re-research on the stress field of perfect elasto-plastic thick-wall tube[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (6): 897-899. (in Chinese). doi: 10.3321/j.issn:1000-6915.2002.06.027
    [29] VESI'C A S. Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972 (3): 265-290.
    [30] 胡小荣, 俞茂宏. 三剪强度准则及其在巷道围岩弹塑性分析中的应用[J]. 煤炭学报, 2003, 28 (4): 389-393. doi: 10.3321/j.issn:0253-9993.2003.04.012

    HU Xiao-rong, YU Mao-hong. New tri-shear failure criterion and its application in elasto-plastic analysis for the wall rock of tunnel[J]. Journal of China Coal Society, 2003, 28 (4): 389-393. (in Chinese). doi: 10.3321/j.issn:0253-9993.2003.04.012
  • 加载中
图(14)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  74
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-05
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回