留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浸水作用下二灰黄土的稳定性

张志权 井彦林 孔德泉 赵洁

张志权, 井彦林, 孔德泉, 赵洁. 浸水作用下二灰黄土的稳定性[J]. 交通运输工程学报, 2018, 18(1): 61-70. doi: 10.19818/j.cnki.1671-1637.2018.01.006
引用本文: 张志权, 井彦林, 孔德泉, 赵洁. 浸水作用下二灰黄土的稳定性[J]. 交通运输工程学报, 2018, 18(1): 61-70. doi: 10.19818/j.cnki.1671-1637.2018.01.006
ZHANG Zhi-quan, JING Yan-lin, KONG De-quan, ZHAO Jie. Stability of lime-fly ash loess under action of water immersion[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 61-70. doi: 10.19818/j.cnki.1671-1637.2018.01.006
Citation: ZHANG Zhi-quan, JING Yan-lin, KONG De-quan, ZHAO Jie. Stability of lime-fly ash loess under action of water immersion[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 61-70. doi: 10.19818/j.cnki.1671-1637.2018.01.006

浸水作用下二灰黄土的稳定性

doi: 10.19818/j.cnki.1671-1637.2018.01.006
基金项目: 

国家自然科学基金项目 41472267

详细信息
    作者简介:

    张志权(1973-), 男, 陕西岐山人, 长安大学高级工程师, 从事岩土工程研究

  • 中图分类号: U412.222

Stability of lime-fly ash loess under action of water immersion

More Information
    Author Bio:

    ZHANG Zhiquan(1973-), male, seniorengineer, zzqca@163.com

  • 摘要: 对二灰黄土进行了不同干湿循环次数和不同浸水时间2种浸水作用下的强度试验和压汞试验, 分析了二灰黄土水稳定性。分析结果表明: 二灰黄土强度较高, 7 d龄期无侧限抗压强度可以达到1.33 MPa; 随着干湿循环次数的增加, 二灰黄土强度出现衰减, 经过2次干湿循环后二灰黄土强度就大幅度降低, 并趋于稳定, 经过10次干湿循环后二灰黄土无侧限抗压强度和抗剪强度降低幅度分别为42.8%、47.4%; 随着干湿循环次数的增加, 二灰黄土的总孔隙体积呈线性增加, 经过10次干湿循环后二灰黄土的总孔隙体积从0.200 1 mL·g-1增大到0.238 3 mL·g-1, 增加了19%; 在干湿循环过程中, 不同孔径孔隙体积变化规律不同, 大孔隙体积呈线性增加, 小孔隙体积和微孔隙体积基本上没有发生变化; 随着浸水时间的延长, 二灰黄土强度出现衰减, 经过2 d浸水后强度产生大幅度降低, 并随着浸水时间继续延长强度逐渐趋于稳定, 经过4 d浸水后二灰黄土无侧限抗压强度和抗剪强度降低幅度分别为33.6%、54.7%。可见: 在石灰与粉煤灰掺量较小的情况下, 水对二灰黄土的强度有明显的弱化作用, 浸水作用可导致二灰黄土强度降低, 干密度略微减小, 总孔隙体积增大, 但相对于未改性黄土, 二灰黄土仍然具有较高的强度和较好的水稳定性, 可以在黄土地区作为道路的底基层推广使用。

     

  • 图  1  电动击实仪

    Figure  1.  Electric compaction instrument

    图  2  无侧限强度测定仪

    Figure  2.  Unconfined compressive strength instrument

    图  3  直剪仪

    Figure  3.  Direct shearing instrument

    图  4  压汞仪

    Figure  4.  Mercury injection porosimeter

    图  5  无侧限强度试验试样

    Figure  5.  Samples for unconfined strength experiment

    图  6  直剪强度试验试样

    Figure  6.  Samples for direct shear strength experiment

    图  7  压汞试验试样

    Figure  7.  Samples for mercury injection experiment

    图  8  干湿循环作用下无侧限抗压强度

    Figure  8.  Unconfined compressive strengths under wetting-drying cycles

    图  9  干湿循环作用下抗剪强度

    Figure  9.  Shearing strengths under wetting-drying cycles

    图  10  干湿循环作用下内聚力

    Figure  10.  Cohesive forces under wetting-drying cycles

    图  11  干湿循环作用下内摩擦角

    Figure  11.  Internal friction angles under wetting-drying cycles

    图  12  干湿循环作用下干密度

    Figure  12.  Dry densities under wetting-drying cycles

    图  13  干湿循环作用下总孔隙体积

    Figure  13.  Total void volumes under wetting-drying cycles

    图  14  干湿循环作用下大孔隙体积

    Figure  14.  Large void volumes under wetting-drying cycles

    图  15  干湿循环作用下中孔隙体积

    Figure  15.  Medium void volumes under wetting-drying cycles

    图  16  干湿循环作用下小孔隙体积

    Figure  16.  Small void volumes under wetting-drying cycles

    图  17  干湿循环作用下微孔隙体积

    Figure  17.  Micro void volumes under wetting-drying cycles

    图  18  不同浸水时间的无侧限抗压强度

    Figure  18.  Unconfined compressive strengths with different immersion times

    图  19  不同浸水时间的抗剪强度

    Figure  19.  Shearing strengths with different immersion times

    图  20  不同浸水时间的内聚力

    Figure  20.  Cohesive forces with different immersion times

    图  21  不同浸水时间的内摩擦角

    Figure  21.  Internal friction angles with different immersion times

    表  1  土的物理性质

    Table  1.   Physical properties of soil

    下载: 导出CSV

    表  2  石灰的性质与化学成分

    Table  2.   Properties and chemical constitutions of white lime

    下载: 导出CSV

    表  3  粉煤灰的物理性质与化学成分

    Table  3.   Physical properties and chemical constitutions of fly ash

    下载: 导出CSV

    表  4  试件

    Table  4.   Specimens

    下载: 导出CSV

    表  5  干湿循环作用下强度试验结果

    Table  5.   Test results of strength under wetting-drying cycles

    下载: 导出CSV

    表  6  干湿循环作用下干密度与孔隙分布试验结果

    Table  6.   Test results of dry density and void distribution under wetting-drying cycles

    下载: 导出CSV

    表  7  不同浸水时间强度试验结果

    Table  7.   Test results of strength under different saturation times

    下载: 导出CSV
  • [1] REZAEIMALEK S, NASOURI A, HUANG Jie, et al. Comparison of short-term and long-term performances for polymer-stabilized sand and clay[J]. Journal of Traffic and Transportation Engineering: English Edition, 2017, 4 (2): 145-155. doi: 10.1016/j.jtte.2017.01.003
    [2] MA L N, YAN S H, ZHANG R L. High-speed railway's roadbed consolidation with fracture grouting in collapsible loess area: mechanism and application[J]. Materials Research Innovations, 2015, 19 (S6): 111-115.
    [3] METELKOVA Z, BOHACJ, PRIKRYL R, et al. Maturation of loess treated with variable lime admixture: pores space textural evolution and related phase changes[J]. Applied Clay Science, 2012, 61: 37-43. doi: 10.1016/j.clay.2012.03.008
    [4] 周建基, 梁收运, 张帆宇, 等. 石灰改良黄土的工程特性试验研究[J]. 铁道建筑, 2014 (9): 105-108. doi: 10.3969/j.issn.1003-1995.2014.09.29

    ZHOU Jian-ji, LIANG Shou-yun, ZHANG Fan-yu, et al. Experimental study on engineering performances of limestabilized loess[J]. Railway Engineering, 2014 (9): 105-108. (in Chinese). doi: 10.3969/j.issn.1003-1995.2014.09.29
    [5] ALDAOOD A, BOUASKER M, AL-MUKHTAR M. Impact of freeze-thaw cycles on mechanical behavior of lime stabilized gypseous soils[J]. Cold Regions Science and Technology, 2014, 99: 38-45. doi: 10.1016/j.coldregions.2013.12.003
    [6] 米海珍, 王昊, 高春, 等. 灰土的浸水强度及残余强度的试验研究[J]. 岩土力学, 2010, 31 (9): 2781-2785. doi: 10.3969/j.issn.1000-7598.2010.09.015

    MI Hai-zhen, WANG Hao, GAO Chun, et al. Study of immersion strength and residual strength of lime-loess[J]. Rock and Soil Mechanics, 2010, 31 (9): 2781-2785. (in Chinese). doi: 10.3969/j.issn.1000-7598.2010.09.015
    [7] ALDAOOD A, BOUASKER M, AL-MUKHTAR M. Effect of water during freeze-thaw cycles on the performance and durability of lime-treated gypseous soil[J]. Cold Regions Science and Technology, 2016, 123: 155-163. doi: 10.1016/j.coldregions.2015.12.008
    [8] LIU Zhen, CAI C S, LIU Feng-yin, et al. Feasibility study of loess stabilization with fly ash-based geopolymer[J]. Journal of Materials in Civil Engineering, 2016, 28 (5): 04016003-1-8. doi: 10.1061/(ASCE)MT.1943-5533.0001490
    [9] 温明星, 骆亚生, 刘紫韦, 等. 掺粉煤灰压实黄土环剪试验研究[J]. 长江科学院院报, 2016, 33 (3): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201603017.htm

    WEN Ming-xing, LUO Ya-sheng, LIU Zi-wei, et al. Ring shear test of compacted loess blended with fly ash[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33 (3): 70-74. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201603017.htm
    [10] 王峻, 王谦, 王平, 等. 粉煤灰掺入量对改性黄土动本构关系的影响[J]. 岩土工程学报, 2013, 35 (S1): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1025.htm

    WANG Jun, WANG Qian, WANG Ping, et al. Effect of adding amount of fly ash on dynamic constitutive relationship of modified loess[J]. Chinese Journal Geotechnical Engineering, 2013, 35 (S1): 156-160. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1025.htm
    [11] WANG Jun, WANG Qian, ZHONG Xiu-mei, et al. Research for dynamic modulus and damping ratio of fly ash modified loess[J]. Advanced Materials Research, 2013, 671-674: 94-100. doi: 10.4028/www.scientific.net/AMR.671-674.94
    [12] PEI Xiang-jun, ZHANG Fan-yu, WU Wan-jiong, et al. Physicochemical and index properties of loess stabilized with lime and fly ash piles[J]. Applied Clay Science, 2015, 114: 77-84. doi: 10.1016/j.clay.2015.05.007
    [13] SINGH D, GHABCHI R, LAGUROS J, et al. Laboratory performance evaluation of stabilized sulfate containing soil with lime and class C fly ash[J]. Geotechnical Special Publication, 2010 (199): 757-766.
    [14] 胡志平, 丁亮进, 王宏旭, 等. 干湿循环下石灰黄土垫层透水性和强度变化试验[J]. 西安科技大学学报, 2011, 31 (1): 39-45. doi: 10.3969/j.issn.1672-9315.2011.01.009

    HU Zhi-ping, DING Liang-jin, WANG Hong-xu, et al. Test study on permeability and strength variation of lime loess bedding under wetting and drying cycles[J]. Journal of Xi'an University of Science Technology, 2011, 31 (1): 39-45. (in Chinese). doi: 10.3969/j.issn.1672-9315.2011.01.009
    [15] ZHANG Yu-fen, ZHANG Zhi-quan, ZHAO Jun-hai. Investigation on mechanical properties and constitutive model of lime-fly ash loess[C]//JIANG Ming-jing, LIU Fang, BOLTON M. International Symposium on Geomechanics and Geotechnics: From Micro to Macro. Boca Raton: CRC Press, 2010: 145-150.
    [16] 张志权, 胡志平, 赵洁. 冻融作用下二灰黄土强度特性[J]. 交通运输工程学报, 2011, 11 (6): 24-30. http://transport.chd.edu.cn/article/id/201106004

    ZHANG Zhi-quan, HU Zhi-ping, ZHAO Jie. Strength properties of lime-fly ash loess under freezing and thawing cycles[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (6): 24-30. (in Chinese). http://transport.chd.edu.cn/article/id/201106004
    [17] YAN Chang-gen, ZHANG Zhi-quan, JING Yan-lin. Characteristics of strength and pore distribution of lime-flyash loess under freeze-thaw cycles and dry-wet cycles[J]. Arabian Journal of Geosciences, 2017, 10 (24): 1-10.
    [18] 张平, 房营光, 闫小庆, 等. 不同干燥方法对重塑膨润土压汞试验用土样的影响试验研究[J]. 岩土力学, 2011, 32 (增1): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1070.htm

    ZHANG Ping, FANG Ying-guang, YAN Xiao-qing, et al. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. Rock and Soil Mechanics, 2011, 32 (S1): 388-391. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1070.htm
    [19] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学: B辑, 1987 (12): 1309-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm

    LEI Xiang-yi. Pore type and collapsibility property of loess in China[J]. Science in China: Series B, 1987 (12): 1309-1316. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm
    [20] 宋学庆. 石灰粉煤灰黄土工程性质试验研究[J]. 中外公路, 2017, 37 (5): 228-232. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201705050.htm

    SONG Xue-qing. Experimental study on engineering properties of lime-fly ash loess[J]. Journal of China and Foreign Highway, 2017, 37 (5): 228-232. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201705050.htm
    [21] 程佳明, 王银梅, 苗世超, 等. 固化黄土的干湿循环特性研究[J]. 工程地质学报, 2014, 22 (2): 226-232. doi: 10.3969/j.issn.1004-9665.2014.02.008

    CHENG Jia-ming, WANG Yin-mei, MIAO Shi-chao, et al. Property study of solidified loess under wet-dry cycles[J]. Journal of Engineering Geology, 2014, 22 (2): 226-232. (in Chinese). doi: 10.3969/j.issn.1004-9665.2014.02.008
    [22] LI Zhi-qing, CUI Zhen-dong, WANG Yan-ping, et al. Experimental study on the engineering characteristics of improved soil[J]. Advanced Materials Research, 2011, 168-170: 1426-1431.
    [23] HUANGJING S, GASALUCK W. The stabilization of loess by chemical additives for road base[J]. Electronic Journal of Geotechnical Engineering, 2010, 15: 1651-1668.
    [24] MUNOZ-CASTELBLANCO J, DELAGE P, PEREIRA J M, et al. Some aspects of the compression and collapse behavior of an unsaturated natural loess[J]. Geotechnique Letters, 2011, 1: 17-22. doi: 10.1680/geolett.11.00003
    [25] 冯美果, 陈善雄, 余颂, 等. 粉煤灰改性膨胀土水稳定性试验研究[J]. 岩土力学, 2007, 28 (9): 1889-1893. doi: 10.3969/j.issn.1000-7598.2007.09.022

    FENG Mei-guo, CHEN Shan-xiong, YU Song, et al. Laboratory study on water stability of flyash-treated expansive soil[J]. Rock and Soil Mechanics, 2007, 28 (9): 1889-1893. (in Chinese). doi: 10.3969/j.issn.1000-7598.2007.09.022
    [26] PEDARLA A, CHITTOORI S, PUPPALA A J, et al. Influence of lime dosage on stabilization effectiveness of montmorillonite dominant clays[J]. Geotechnical Special Publication, 2010, 199: 767-776.
  • 加载中
图(21) / 表(7)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  93
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-12
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回