留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提速客车转向架安全吊座疲劳失效机理与改进方法

连青林 刘志明 王文静

连青林, 刘志明, 王文静. 提速客车转向架安全吊座疲劳失效机理与改进方法[J]. 交通运输工程学报, 2018, 18(1): 71-78. doi: 10.19818/j.cnki.1671-1637.2018.01.007
引用本文: 连青林, 刘志明, 王文静. 提速客车转向架安全吊座疲劳失效机理与改进方法[J]. 交通运输工程学报, 2018, 18(1): 71-78. doi: 10.19818/j.cnki.1671-1637.2018.01.007
LIAN Qing-lin, LIU Zhi-ming, WANG Wen-jing. Fatigue failure mechanism and improvement method of safety suspender mounting base of speed-up passenger car bogie[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 71-78. doi: 10.19818/j.cnki.1671-1637.2018.01.007
Citation: LIAN Qing-lin, LIU Zhi-ming, WANG Wen-jing. Fatigue failure mechanism and improvement method of safety suspender mounting base of speed-up passenger car bogie[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 71-78. doi: 10.19818/j.cnki.1671-1637.2018.01.007

提速客车转向架安全吊座疲劳失效机理与改进方法

doi: 10.19818/j.cnki.1671-1637.2018.01.007
基金项目: 

国家重点研发计划 2016YFB1200501-008

国家重点研发计划 2016YFB1200505-011

详细信息
    作者简介:

    连青林(1991-), 男, 福建泉州人, 北京交通大学工学博士研究生, 从事结构强度及疲劳可靠性研究

    刘志明(1966-), 男, 江西南昌人, 北京交通大学教授, 工学博士

  • 中图分类号: U270.33

Fatigue failure mechanism and improvement method of safety suspender mounting base of speed-up passenger car bogie

More Information
  • 摘要: 分析了提速客车转向架安全吊座孔附近产生的疲劳裂纹特征, 提出共振现象造成的结构振动疲劳是该部位产生裂纹最主要原因的假设; 通过有限元仿真得到安全吊杆的前110阶模态振型, 分析了各阶模态频率; 进行线路实测加速度与动应力试验, 得到等效应力、加速度及其主频, 并与有限元仿真结果进行对比分析; 在掌握了安全吊座失效机理的基础上, 通过结构改进与调整连接方式优化安全吊杆结构及其固定方式; 对新结构进行线路实测试验, 并对其安全性与经济性进行评估。研究结果表明: 受普通客车运行线路条件影响, 安全吊杆振动频率(加速度主频为91.78 Hz, 动应力主频为91.00Hz) 与有限元计算的第4阶模态频率(95.79Hz) 相近而产生共振; 安全吊杆的纵向加速度功率谱密度远大于其横向值与垂向值, 这与列车的运行方向相吻合, 因此, 振动疲劳使得安全吊座孔边产生裂纹; 在螺栓孔两侧增加5mm厚垫片, 并且将安全吊杆由钢板折弯结构更改为钢丝绳柔性结构能够最大程度降低螺栓孔处等效应力幅值, 减少疲劳损伤累积; 改进后的安全吊杆满足1 200万公里的使用要求, 取得较好的经济效果。

     

  • 图  1  安全吊座位置

    Figure  1.  Location of safety suspender mounting base

    图  2  安全吊座断口宏观形貌

    Figure  2.  Fracture macroscopic morphologies of safety suspender mounting base

    图  3  有限元仿真模型

    Figure  3.  Finite element simulation model

    图  4  测点布置方式

    Figure  4.  Distribution of measuring points

    图  5  应力测点位置

    Figure  5.  Positions of stress measuring points

    图  6  加速度测点位置

    Figure  6.  Positions of acceleration measuring points

    图  7  安全吊杆加速度-时间曲线

    Figure  7.  Acceleration-time curves of safety suspender

    图  8  安全吊杆应力-时间曲线

    Figure  8.  Stress-time curves of safety suspender

    图  9  加速度功率谱密度

    Figure  9.  Acceleration power spectral densities

    图  10  应力功率谱密度

    Figure  10.  Stress power spectral densities

    图  11  安全吊杆第4阶模态振型

    Figure  11.  Fourth order mode's vibration shape of safety suspender

    图  12  方案1的结构

    Figure  12.  Structure of scheme 1

    图  13  方案2的结构

    Figure  13.  Structure of scheme 2

    图  14  方案3的结构

    Figure  14.  Structure of scheme 3

    图  15  方案4的结构

    Figure  15.  Structure of scheme 4

    图  16  方案5的结构

    Figure  16.  Structure of scheme 5

    图  17  方案1~5等效应力对比

    Figure  17.  Comparison of equivalent stresses of schemes 1-5

    表  1  安全吊杆的1~10阶模态

    Table  1.   1-10order modes of safety suspender

    下载: 导出CSV

    表  2  孔边应力极值与等效应力

    Table  2.   Extremum stresses and equivalent stresses on edge of bolt hole

    下载: 导出CSV
  • [1] 姚起杭. 谈谈加速振动试验问题[J]. 航空标准化与质量, 1975 (6): 7-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBZ197506003.htm

    YAO Qi-hang. Issue of accelerated vibration test[J]. Aeronautic Standardization and Quality, 1975 (6): 7-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKBZ197506003.htm
    [2] 姚起杭, 姚军. 工程结构的振动问题[J]. 应用力学学报, 2006, 23 (1): 12-15. doi: 10.3969/j.issn.1000-4939.2006.01.003

    YAO Qi-hang, YAO Jun. Vibration fatigue in engineering structures[J]. Chinese Journal of Applied Mechanics, 2006, 23 (1): 12-15. (in Chinese). doi: 10.3969/j.issn.1000-4939.2006.01.003
    [3] AYKAN M, CELIK M. Vibration fatigue analysis and multiaxial effect in testing of aerospace structures[J]. Mechanical Systems and Signal Processing, 2009, 23 (3): 897-907. doi: 10.1016/j.ymssp.2008.08.006
    [4] 高红俐, 郑欢斌, 朱亚伦. 裂纹扩展过程中电磁谐振疲劳试验系统动态特性分析[J]. 机械工程学报, 2016, 52 (24): 88-98. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201624010.htm

    GAO Hong-li, ZHENG Huan-bin, ZHU Ya-lun. Dynamic characteristics analysis of electromagnetic resonance fatigue testing system during the fatigue crack growing process[J]. Journal of Mechanical Engineering, 2016, 52 (24): 88-98. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201624010.htm
    [5] 任尊松, 刘志明. 高速动车组振动传递及频率分布规律[J]. 机械工程学报, 2013, 49 (16): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm

    REN Zun-song, LIU Zhi-ming. Vibration and frequency domain characteristics of high speed EMU[J]. Journal of Mechanical Engineering, 2013, 49 (16): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm
    [6] 王文静, 惠晓龙, 马纪军. 高速列车设备舱支架疲劳裂纹机理研究[J]. 机械工程学报, 2015, 51 (6): 142-147. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201506025.htm

    WANG Wen-jing, HUI Xiao-long, MA Ji-jun. Fatigue crack mechanism research on high speed train equipment cabin frame[J]. Journal of Mechanical Engineering, 2015, 51 (6): 142-147. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201506025.htm
    [7] 刘文光, 陈国平, 贺红林, 等. 结构振动疲劳研究综述[J]. 工程设计学报, 2012, 19 (1): 1-8, 24. doi: 10.3785/j.issn.1006-754X.2012.01.001

    LIU Wen-guang, CHEN Guo-ping, HE Hong-lin, et al. Review of studying on vibration fatigue[J]. Chinese Journal of Engineering Design, 2012, 19 (1): 1-8, 24. (in Chinese). doi: 10.3785/j.issn.1006-754X.2012.01.001
    [8] 王明珠, 姚卫星, 孙伟. 结构随机振动疲劳寿命估算的样本法[J]. 中国机械工程, 2008, 19 (8): 972-975. doi: 10.3321/j.issn:1004-132X.2008.08.021

    WANG Ming-zhu, YAO Wei-xing, SUN Wei. Sample approach for fatigue life prediction of structures under random vibration[J]. China Mechanical Engineering, 2008, 19 (8): 972-975. (in Chinese). doi: 10.3321/j.issn:1004-132X.2008.08.021
    [9] 刘志明. 随机载荷下焊接构架疲劳寿命及可靠性研究[D]. 北京: 北京交通大学, 2001.

    LIU Zhi-ming. A research on fatigue life and reliability of welding frame under random loads[D]. Beijing: Beijing Jiaotong University, 2001. (in Chinese).
    [10] YU D, AL-YAFAWI A, NGUYEN T T, et al. High-cycle fatigue life prediction for Pb-free BGA under random vibration loading[J]. Microelectronics Reliability, 2011, 51 (3): 649-656. doi: 10.1016/j.microrel.2010.10.003
    [11] MARLOFF R H. Resonant fatigue testing of riveted joints[J]. Experimental Mechanics, 1980, 20 (2): 37-43. doi: 10.1007/BF02321032
    [12] 韩清华, 韩飞, 王海英, 等. 飞机平尾振动疲劳试验分析[J]. 结构强度研究, 2009 (2): 4-6, 21.

    HAN Qing-hua, HAN Fei, WANG Hai-ying, et al. Analysis on vibration fatigue test for the horizontal tail of aircraft[J]. Journal of Structural Strength, 2009 (2): 4-6, 21. (in Chinese).
    [13] THORSEN M J, SÆVIK S, LARSEN C M. Fatigue damage from time domain simulation of combined in-line and crossflow vortex-induced vibrations[J]. Marine Structures, 2015, 41: 200-222. doi: 10.1016/j.marstruc.2015.02.005
    [14] MATVEEV V V, BOVSUNOVSKY A P. Vibration-based diagnostics of fatigue damage of beam-like structures[J]. Journal of Sound and Vibration, 2002, 249: 23-40. doi: 10.1006/jsvi.2001.3816
    [15] TSYFANSKY S L, BERESNEVICH V I. Non-linear vibration method for dection of fatigue cracks in aircraft wings[J]. Journal of Sound and Vibration, 2000, 236: 49-60. doi: 10.1006/jsvi.2000.2981
    [16] MRŠNIK M, SLAVIC J, BOLTEľAR M. Frequency-domain methods for a vibration-fatigue-life estimation—application to real data[J]. International Journal of Fatigue, 2013, 42 (2): 8-17.
    [17] JULIEN B, BERTRAND F, THIERRY Y. Probabilistic random vibration fatigue[J]. Procedia Engineering, 2013, 66: 522-529. doi: 10.1016/j.proeng.2013.12.104
    [18] HACK M, ZINGSHEIM F. Multiaxial load situations in random vibration fatigue-phasing and cross correlation[J]. Procedia Engineering, 2013, 66: 530-538. doi: 10.1016/j.proeng.2013.12.105
    [19] GAO Yun, ZONG Zhi, SUN Lei. Numerical prediction of fatigue damage in steel catenary riser due to vortex-induced vibration[J]. Journal of Hydrodynamics, 2011, 23 (2): 154-163.
    [20] 张钊, 张万玉, 胡亚琪. 飞机结构振动疲劳分析研究进展[J]. 航空计算技术, 2012, 42 (2): 60-64, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201202017.htm

    ZHANG Zhao, ZHANG Wan-yu, HU Ya-qi. Development of aircraft structure vibration fatigue life study[J]. Aeronautical Computing Technique, 2012, 42 (2): 60-64, 68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201202017.htm
    [21] XU Chen, FUKADA S, MASUYA H. The impact vibrationbased fatigue damage assessment of steel and steel fiber reinforced concrete composite girder[J]. International Journal of Steel Structures, 2016, 16 (4): 1217-1226. doi: 10.1007/s13296-016-0060-5
    [22] XU Lin, RABOTTI C, MISCHI M. Analysis of vibration exercise at varying frequencies by different fatigue estimators[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24 (12): 1284-1293.
    [23] ZHANG Z H, XIAO Y, LIU Y Q, et al. A quantitative investigation on vibration durability of viscoelastic relaxation in bolted composite joints[J]. Journal of Composite Materials, 2016, 50 (29): 4041-4056.
    [24] WU Tie-ying, WAGNER D, KIRK D. Analysis of the plastic zone of a circle crack under very high cycle fatigue[J]. International Journal of Fatigue, 2016, 93: 415-421.
    [25] CARLUCCI F, FELICI F, PICCININI A, et al. Individual optimal frequency in whole-body vibration: effect of protocol, joint angle, and fatiguing exercise[J]. The Journal of Strength and Conditioning Research, 2016, 30 (12): 3503-3511.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  143
  • PDF下载量:  477
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-13
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回