留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢渣沥青混合料体积参数测定与水稳定性影响机理

高振鑫 申爱琴 翟超伟 郭寅川 于澎

高振鑫, 申爱琴, 翟超伟, 郭寅川, 于澎. 钢渣沥青混合料体积参数测定与水稳定性影响机理[J]. 交通运输工程学报, 2018, 18(2): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.02.001
引用本文: 高振鑫, 申爱琴, 翟超伟, 郭寅川, 于澎. 钢渣沥青混合料体积参数测定与水稳定性影响机理[J]. 交通运输工程学报, 2018, 18(2): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.02.001
GAO Zhen-xin, SHEN Ai-qin, ZHAI Chao-wei, GUO Yin-chuan, YU Peng. Determination of volumetric parameters and impacting mechanism of water stability for steel slag asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.02.001
Citation: GAO Zhen-xin, SHEN Ai-qin, ZHAI Chao-wei, GUO Yin-chuan, YU Peng. Determination of volumetric parameters and impacting mechanism of water stability for steel slag asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.02.001

钢渣沥青混合料体积参数测定与水稳定性影响机理

doi: 10.19818/j.cnki.1671-1637.2018.02.001
基金项目: 

国家自然科学基金项目 51778061

陕西省自然科学基础研究计划项目 2017JQ5085

详细信息
    作者简介:

    高振鑫(1975-), 男, 陕西佳县人, 陕西省交通运输厅高级工程师, 长安大学工学博士研究生, 从事路面结构和材料研究

    申爱琴(1957-), 女, 陕西西安人, 长安大学教授, 工学博士

  • 中图分类号: U414.01

Determination of volumetric parameters and impacting mechanism of water stability for steel slag asphalt mixture

More Information
    Author Bio:

    GAOZhen-xin(1975-), male, senior engineer, doctoral student, 1376178432@qq.com

    SHEN Ai-qin(1957-), female, professor, PhD,

  • 摘要: 通过浸渍试验测定了不同粒径钢渣集料的有效相对密度, 提出了钢渣沥青混合料体积参数的确定方法, 采用残留稳定度、冻融劈裂强度比与沥青膜厚度对不同钢渣掺量的沥青混合料水稳定性进行评价, 借助X射线荧光光谱分析、扫描电镜试验和压汞试验, 从钢渣化学组成与微观结构方面分析了钢渣对沥青混合料水稳定性的影响机理。分析结果表明: 对于钢渣等吸水性较大集料, 采用浸渍试验实测的有效相对密度较计算法得到的有效相对密度增大了1.5%, 更接近集料的实际有效相对密度, 因此, 采用浸渍试验确定的钢渣沥青混合料体积参数更加合理; 随着钢渣掺量增大, 钢渣沥青混合料水稳定性逐渐提升, 当钢渣掺量为70%时, 钢渣沥青混合料的残留稳定度提高了12%, 冻融劈裂强度比提高了13%;钢渣沥青混合料沥青膜厚度随钢渣掺量增大而增大, 当钢渣掺量为70%时, 沥青混合料的沥青膜厚度增大了13%, 较厚的沥青膜可有效防止水分入侵, 并增大集料表面“结构沥青”含量, 从而提高钢渣沥青混合料的水稳定性; 钢渣沥青混合料沥青膜厚度计算值为67μm, 由于其水稳定性与沥青膜厚度正相关, 故推荐基于水稳定性的钢渣沥青混合料的沥青膜厚度为7μm; 钢渣呈超碱性, 表面多孔隙, 孔隙内部结构复杂, 增大了钢渣集料与沥青间有效接触面积, 并形成较好的机械咬合力, 提高了钢渣集料与沥青之间的黏结性, 可显著改善沥青混合料的水稳定性。

     

  • 图  1  扫描电镜试验过程

    Figure  1.  Process of SEM test

    图  2  扫描电子显微镜

    Figure  2.  Scanning electron microscope

    图  3  压汞仪

    Figure  3.  Mercury injection apparatus

    图  4  相对密度与集料粒径关系

    Figure  4.  Relationships between relative density and grain size of aggregate

    图  5  空隙率与钢渣掺量关系

    Figure  5.  Relationships between voidage and steel slag content

    图  6  最佳油石比与钢渣掺量关系

    Figure  6.  Relationships between optimal bitumen ratio and steel slag content

    图  7  钢渣沥青混合料合理体积参数确定流程

    Figure  7.  Determining process of reasonable volumetric parameters of steel slag asphalt mixture

    图  8  冻融劈裂试验结果

    Figure  8.  Result of freezing-thawing splitting test

    图  9  浸水马歇尔试验结果

    Figure  9.  Result of immersion Marshall test

    图  10  钢渣沥青混合料沥青膜厚度比较

    Figure  10.  Asphalt film thickness comparison of steel slag asphalt mixture

    图  11  钢渣集料

    Figure  11.  Steel slag aggregates

    图  12  辉绿岩集料

    Figure  12.  Diabase aggregates

    图  13  钢渣-沥青界面

    Figure  13.  Interfaces between steel slag and asphalt

    图  14  辉绿岩-沥青界面

    Figure  14.  Interfaces between diabase and asphalt

    表  1  粗集料技术指标

    Table  1.   Technical indexes of coarse aggregates

    下载: 导出CSV

    表  2  基质沥青技术指标

    Table  2.   Technical indexes of matrix asphalt

    下载: 导出CSV

    表  3  橡胶沥青技术指标

    Table  3.   Technical indexes of rubber asphalt

    下载: 导出CSV

    表  4  不同钢渣掺量沥青混合料级配

    Table  4.   Gradations of asphalt mixture with different steel slag contents

    下载: 导出CSV

    表  5  钢渣沥青混合料的体积参数与力学指标

    Table  5.   Volumetric parameters and mechanical indexes of steel slag asphalt mixture

    下载: 导出CSV

    表  6  各粒径集料比表面积系数

    Table  6.   Specific surface area coefficients of each grain size aggregate

    下载: 导出CSV

    表  7  钢渣化学组成

    Table  7.   Chemical composition of steel slag

    下载: 导出CSV

    表  8  压汞试验结果

    Table  8.   Result of mercury injection test

    下载: 导出CSV

    表  9  集料孔径分布

    Table  9.   Pore size distributions of aggregates

    下载: 导出CSV
  • [1] 高本恒, 郝以党, 张淑苓, 等. 钢渣综合利用现状及发展趋势[J]. 环境工程, 2016, 34 (增1): 776-779. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2016S1190.htm

    GAO Ben-heng, HAO Yi-dang, ZHANG Shu-ling, et al. Development trend and comprehensive utilization of steel slag[J]. Environmental Engineering, 2016, 34 (S1): 776-779. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2016S1190.htm
    [2] 赵计辉, 阎培渝. 钢渣的体积安定性问题及稳定化处理的国内研究进展[J]. 硅酸盐通报, 2017, 36 (2): 477-484. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201702011.htm

    ZHAO Ji-hui, YAN Pei-yu. Volume stability and stabilization treatment of steel slag in China[J]. Bulletin of the Chinese Ceramic Society, 2017, 36 (2): 477-484. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201702011.htm
    [3] GAO Jie, SHA Ai-min, WANG Zhen-jun, et al. Utilization of steel slag as aggregate in asphalt mixtures for microwave deicing[J]. Journal of Cleaner Production, 2017, 152: 429-442. doi: 10.1016/j.jclepro.2017.03.113
    [4] PASETTO M, BALDO N. Mix design and performance analysis of asphalt concretes with electric arc furnace slag[J]. Construction and Building Materials, 2011, 25 (8): 3458-3468. doi: 10.1016/j.conbuildmat.2011.03.037
    [5] MAGADI K L, ANIRUDH N, MALLESH K M. Evaluation of bituminous concrete mixture properties with steel slag[J]. Transportation Research Procedia, 2016, 17: 174-183. doi: 10.1016/j.trpro.2016.11.073
    [6] 李灿华, 向晓东, 周溪滢. 钢渣开级配透水沥青混合料及性能研究[J]. 建筑材料学报, 2015, 18 (1): 168-171. doi: 10.3969/j.issn.1007-9629.2015.01.030

    LI Can-hua, XIANG Xiao-dong, ZHOU Xi-ying. Investigation of performance of porous open graded steel slag asphalt mixture[J]. Journal of Building Materials, 2015, 18 (1): 168-171. (in Chinese). doi: 10.3969/j.issn.1007-9629.2015.01.030
    [7] 牛哲. 钢渣沥青混合料的制备与性能研究[D]. 南京: 东南大学, 2016.

    NIU Zhe. Research on preparation and performance of steel slag asphalt pavement[D]. Nanjing: Southeast University, 2016. (in Chinese).
    [8] 谢君. 钢渣沥青混凝土的制备、性能与应用研究[D]. 武汉: 武汉理工大学, 2013.

    XIE Jun. Research on the preparation, performance and application of basic oxygen slag based asphalt concrete[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese).
    [9] 王雅婷. 钢渣集料在沥青路面超薄抗滑磨耗层中的应用研究[D]. 重庆: 重庆交通大学, 2013.

    WANG Ya-ting. Study on application of steel slag aggregate in ultra-thin against sliding wear layer[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese).
    [10] 阮文. 石灰粉煤灰稳定钢渣碎石材料的路用性能研究[D]. 长沙: 湖南大学, 2012.

    RUAN Wen. A study on road performance of lime-fly-ash stabilized steel-slag-crushed-stone material[D]. Changsha: Hunan University, 2012. (in Chinese).
    [11] HESAMI S, AMERI M, GOLI H, et al. Laboratory investigation of moisture susceptibility of warm-mix asphalt mixtures containing steel slag aggregates[J]. International Journal of Pavement Engineering, 2015, 16 (8): 745-759. doi: 10.1080/10298436.2014.953502
    [12] CHEN Jian-shiuh, WEI Shi-hsiu. Engineering properties and performance of asphalt mixtures incorporating steel slag[J]. Construction and Building Materials, 2016, 128: 148-153. doi: 10.1016/j.conbuildmat.2016.10.027
    [13] CHEN Zong-wu, WU Shao-peng, WEN Jin, et al. Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture[J]. Construction and Building Materials, 2015, 93: 911-918. doi: 10.1016/j.conbuildmat.2015.05.070
    [14] 庹峻玮. 钢渣碎石沥青混合料路用性能研究[D]. 重庆: 重庆交通大学, 2012.

    TUO Jun-wei. Study on pavement performance of steel slag and gravel asphalt mixture[D]. Chongqing: Chongqing Jiaotong University, 2012. (in Chinese).
    [15] SENGOZ B, AGAR E. Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt[J]. Building and Environment, 2007, 42 (10): 3621-3628. doi: 10.1016/j.buildenv.2006.10.006
    [16] LI Xin-jun, WILLIAMS C R, MARASTEANU M O, et al. Investigation of in-place asphalt film thickness and performance of hot-mix asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2009, 21 (6): 262-270. doi: 10.1061/(ASCE)0899-1561(2009)21:6(262)
    [17] 余志凯, 黄刚, 胥吉. 沥青膜厚度对混合料水稳定性的影响[J]. 北方交通, 2010 (7): 17-19. doi: 10.3969/j.issn.1673-6052.2010.07.006

    YU Zhi-kai, HUANG Gang, XU Ji. Effect of asphalt film thickness on the moisture sensitivity of asphalt mixture[J]. Northern Communications, 2010 (7): 17-19. (in Chinese). doi: 10.3969/j.issn.1673-6052.2010.07.006
    [18] 刘寒冰, 吕得保. 沥青混合料沥青膜厚度的确定[J]. 吉林大学学报: 工学版, 2011, 41 (增2): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2011S2032.htm

    LIU Han-bing, LU De-bao. Determination of the asphalt film thickness of asphalt mixture[J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41 (S2): 153-158. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2011S2032.htm
    [19] 郭乃胜, 尤占平, 谭忆秋, 等. 考虑均匀性的沥青混合料最佳沥青用量确定方法[J]. 交通运输工程学报, 2017, 17 (1): 1-10. doi: 10.3969/j.issn.1671-1637.2017.01.001

    GUO Nai-sheng, YOU Zhan-ping, TAN Yi-qiu, et al. Determination method of optimum asphalt content in asphalt mixture under considering homogeneity[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 1-10. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.01.001
    [20] HAN Fang-hui, ZHANG Zeng-qi, WANG Dong-min, et al. Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures[J]. Thermochimica Acta, 2015, 605: 43-51. doi: 10.1016/j.tca.2015.02.018
    [21] 刘迪, 邓敏, 林长农, 等. 钢渣微观结构及性能分析[J]. 混凝土, 2014 (12): 88-90, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201412028.htm

    LIU Di, DENG Min, LIN Chang-nong, et al. Microstructures and properties of steel slag[J]. Concrete, 2014 (12): 88-90, 94. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201412028.htm
    [22] ZHANG Nan, HE Man-chao, ZHANG Bo, et al. Pore structure characteristics and permeability of deep sedimentary rocks determined by mercury intrusion porosimetry[J]. Journal of Earth Science, 2016, 27 (4): 670-676.
    [23] 唐华瑞, 韩灵杰, 王杏杏, 等. 基于压汞实验的粘土微孔隙分布特征研究[J]. 广西大学学报: 自然科学版, 2016, 41 (1): 228-233. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201601029.htm

    TANG Hua-rui, HAN Ling-jie, WANG Xing-xing, et al. Study on distribution of clay void based on mercury penetration test[J]. Journal of Guangxi University: Natural Science Edition, 2016, 41 (1): 228-233. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201601029.htm
    [24] 邹明清. 分形理论的若干应用[D]. 武汉: 华中科技大学, 2007.

    ZOU Ming-qing. Fracal theory and its applications to porous media, rough surface and thermal contact conductance[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese).
    [25] 武建民, 郑平安, 冀永安. 橡胶颗粒沥青混合料级配分形与动稳定度的关系[J]. 长安大学学报: 自然科学版, 2015, 35 (1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201501003.htm

    WU Jian-min, ZHENG Ping-an, JI Yong-an. Correlational analysis of graded fractal dimension of rubber particle asphalt mixture and its dynamic stability[J]. Journal of Chang'an University: Natural Science Edition, 2015, 35 (1): 8-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201501003.htm
    [26] 童申家, 谢祥兵, 赵大勇. 沥青路面纹理分布的分形描述及抗滑性能评价[J]. 中国公路学报, 2016, 29 (2): 1-7. doi: 10.3969/j.issn.1001-7372.2016.02.001

    TONG Shen-jia, XIE Xiang-bing, ZHAO Da-yong. Fractal description of texture distribution and evaluation of skidresistance performance for asphalt pavement[J]. China Journal of Highway and Transport, 2016, 29 (2), 1-7. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.02.001
  • 加载中
图(14) / 表(9)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  111
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-20
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回