留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量法的轮对蛇行运动稳定性

孙建锋 池茂儒 吴兴文 梁树林 李伟

孙建锋, 池茂儒, 吴兴文, 梁树林, 李伟. 基于能量法的轮对蛇行运动稳定性[J]. 交通运输工程学报, 2018, 18(2): 82-89. doi: 10.19818/j.cnki.1671-1637.2018.02.009
引用本文: 孙建锋, 池茂儒, 吴兴文, 梁树林, 李伟. 基于能量法的轮对蛇行运动稳定性[J]. 交通运输工程学报, 2018, 18(2): 82-89. doi: 10.19818/j.cnki.1671-1637.2018.02.009
SUN Jian-feng, CHI Mao-ru, WU Xing-wen, LIANG Shu-lin, LI Wei. Hunting motion stability of wheelset based on energy method[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 82-89. doi: 10.19818/j.cnki.1671-1637.2018.02.009
Citation: SUN Jian-feng, CHI Mao-ru, WU Xing-wen, LIANG Shu-lin, LI Wei. Hunting motion stability of wheelset based on energy method[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 82-89. doi: 10.19818/j.cnki.1671-1637.2018.02.009

基于能量法的轮对蛇行运动稳定性

doi: 10.19818/j.cnki.1671-1637.2018.02.009
基金项目: 

国家自然科学基金项目 51475390

国家自然科学基金项目 U1434201

详细信息
    作者简介:

    孙建锋(1991-), 男, 浙江绍兴人, 西南交通大学工学博士研究生, 从事车辆系统动力学研究

    池茂儒(1973-), 男, 四川通江人, 西南交通大学研究员, 工学博士

  • 中图分类号: U270.11

Hunting motion stability of wheelset based on energy method

More Information
  • 摘要: 为了分析轮对蛇行运动的形成机理与能量传递机制, 基于车辆系统动力学理论推导了轮对蛇行运动的能量表达式; 借助轮对运动参数的相位关系和能量表达式, 确定了轮对蛇行运动过程中各部分所做的功及其对应的能量传递路线; 通过数值仿真计算不同参数条件下的输入能量, 对比了踏面等效锥度、轮对质量、一系悬挂刚度与重力刚度等参数对轮对稳定性的影响规律。研究结果表明: 蠕滑力和锥形踏面的协同作用是轮对产生蛇行运动的根本原因, 蠕滑力中的刚度项通过调节纵、横向蠕滑率向轮对系统横向运动输入能量, 蠕滑力中的阻尼项耗散轮对系统的能量; 当输入能量大于耗散能量时, 轮对蛇行运动发散, 当输入能量小于耗散能量时, 蛇行运动收敛, 当输入能量等于耗散能量时, 轮对做等幅周期运动; 增大轮对质量和车轮踏面等效锥度不利于轮对的稳定性, 增大一系悬挂纵、横向刚度对轮对稳定性有利; 踏面等效锥度对轮对稳定性的影响最大, 当锥度由0.15增大到0.20时, 输入能量增大了约9.5倍; 一系悬挂刚度的影响次之, 刚度由75kN·m-1增大到100kN·m-1时, 输入能量减小了约60%;轮对质量影响最小, 轮对质量由1 000kg增大到2 100kg时, 输入能量增长了约1.1倍; 在锥形踏面下, 重力刚度对轮对稳定性的影响可以忽略。

     

  • 图  1  线性轮对系统几何模型

    Figure  1.  Geometric model of linear wheelset system

    图  2  轮对运动参数相位

    Figure  2.  Phases of wheelset movement parameters

    图  3  轮对蛇行运动能量传递过程

    Figure  3.  Energy transfer process of wheelset hunting motion

    图  4  轮对横移和能量

    Figure  4.  Wheelset traverse and energy

    图  5  不同锥度下输入能量对比

    Figure  5.  Comparison of input energies under different conicities

    图  6  不同一系悬挂刚度下输入能量对比

    Figure  6.  Comparison of input energies under different primary suspension stiffnesses

    图  7  不同轮对质量下输入能量对比

    Figure  7.  Comparison of input energies under different wheelset masses

    图  8  重力刚度对输入能量的影响

    Figure  8.  Influence of gravity stiffness on input energy

    表  1  计算参数

    Table  1.   Calculation parameters

    下载: 导出CSV
  • [1] KNOTHE K, BÖHM F. History of stability of railway and road vehicles[J]. Vehicle System Dynamics, 1999, 31 (5/6): 283-323.
    [2] ELKINS J A, CARTER A. Testing and analysis techniques for safety assessment of rail vehicles: the state-of-the-art[J]. Vehicle System Dynamics, 1993, 22 (3/4): 185-208.
    [3] WU Xing-wen, CHI Mao-ru, GAO Hao, et al. Post-derailment dynamic behavior of railway vehicles travelling on a railway bridge during an earthquake[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230 (2): 418-439. doi: 10.1177/0954409714543338
    [4] BRUNI S, GOODALL R, MEI T X, et al. Control and monitoring for railway vehicle dynamics[J]. Vehicle System Dynamics, 2007, 45 (7/8): 743-779.
    [5] WEINSTOCK H. Wheel climb derailment criteria for evaluation of rail vehicle safety[R]. New York: American Society of Mechanical Engineers, 1984.
    [6] 王勇, 曾京, 张卫华. 铁道货车非线性稳定性[J]. 交通运输工程学报, 2002, 2 (2): 36-40. doi: 10.3321/j.issn:1671-1637.2002.02.009

    WANG Yong, ZENG Jing, ZHANG Wei-hua. Nonlinear stability of railway freight cars[J]. Journal of Traffic and Transportation Engineering, 2002, 2 (2): 36-40. (in Chinese). doi: 10.3321/j.issn:1671-1637.2002.02.009
    [7] 王开云, 翟婉明, 蔡成标. 轮轨结构参数对列车运动稳定性的影响[J]. 中国铁道科学, 2003, 24 (1): 43-48. doi: 10.3321/j.issn:1001-4632.2003.01.009

    WANG Kai-yun, ZHAI Wan-ming, CAI Cheng-biao. Effect of wheel rail structure parameter on stability of train movement[J]. China Railway Science, 2003, 24 (1): 43-48. (in Chinese). doi: 10.3321/j.issn:1001-4632.2003.01.009
    [8] 池茂儒, 张卫华, 曾京, 等. 蛇行运动对铁道车辆平稳性的影响[J]. 振动工程学报, 2008, 21 (6): 639-643. doi: 10.3969/j.issn.1004-4523.2008.06.018

    CHI Mao-ru, ZHANG Wei-hua, ZENG Jing, et al. Influence of hunting motion on ride quality of railway vehicle[J]. Journal of Vibration Engineering, 2008, 21 (6): 639-643. (in Chinese). doi: 10.3969/j.issn.1004-4523.2008.06.018
    [9] DUKKIPATI R V. A parametric study of the lateral stability of a rail bogie on a roller rig[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1999, 213 (1): 39-47. doi: 10.1243/0954409991531010
    [10] LIEH J, HAQUE I. Parametrically excited behavior of a railway wheelset[J]. Journal of Dynamic Systems, Measurement, and Control, 1988, 110 (1): 8-17. doi: 10.1115/1.3152656
    [11] LIEH J, YIN J. Stability of a flexible wheelset for high speed rail vehicles with constant and varying parameters[J]. Journal of Vibration and Acoustics, 1998, 120 (4): 997-1002. doi: 10.1115/1.2893933
    [12] YABUNO H, OKAMOTO T, AOSHIMA N. Effect of lateral linear stiffness on nonlinear characteristics of hunting motion of a railway wheelset[J]. Meccanica, 2002, 37 (6): 555-568. doi: 10.1023/A:1020957126438
    [13] TRUE H. Railway vehicle chaos and asymmetric hunting[J]. Vehicle System Dynamics, 1992, 20 (S1): 625-637.
    [14] TRUE H. Dynamics of a rolling wheelset[J]. Applied Mechanics Reviews, 1993, 46 (7): 438-444. doi: 10.1115/1.3120372
    [15] TRUE H, JENSEN J C. Parameter study of hunting and chaos in railway vehicle dynamics[J]. Vehicle System Dynamics, 1994, 23 (S1): 508-521.
    [16] TRUE H. Dynamics of railway vehicles and rail/wheel contact[M]//SCHIEHLEN W. Dynamical Analysis of Vehicle Systems. Berlin: Springer, 2009: 75-128.
    [17] AHMADIAN M, YANG S P. Hopf bifurcation and hunting behavior in a rail wheelset with flange contact[J]. Nonlinear Dynamics, 1998, 15 (1): 15-30. doi: 10.1023/A:1008278713331
    [18] AHMADIAN M, YANG S P. Effect of system nonlinearities on locomotive bogie hunting stability[J]. Vehicle System Dynamics, 1998, 29 (6): 365-384. doi: 10.1080/00423119808969380
    [19] POLACH O. On non-linear methods of bogie stability assessment using computer simulations[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220 (1): 13-27. doi: 10.1243/095440905X33251
    [20] POLACH O. Comparability of the non-linear and linearized stability assessment during railway vehicle design[J]. Vehicle System Dynamics, 2006, 44 (S1): 129-138.
    [21] POLACH O. Characteristic parameters of nonlinear wheel/rail contact geometry[J]. Vehicle System Dynamics, 2010, 48 (S1): 19-36.
    [22] WU Xing-wen, CHI Mao-ru. Parameters study of hopf bifurcation in railway vehicle system[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10 (3): 031012-1-10. doi: 10.1115/1.4027683
    [23] POLIZZOTTO C. An energy approach to the boundary element method. Part I: elastic solids[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 69 (2): 167-184. doi: 10.1016/0045-7825(88)90186-7
    [24] MUSTAFA B A J, ALI R. An energy method for free vibration analysis of stiffened circular cylindrical shells[J]. Computers and Structures, 1989, 32 (2): 355-363. doi: 10.1016/0045-7949(89)90047-3
    [25] SMITH M J. A hybrid energy method for predicting high frequency vibrational response of point-loaded plates[J]. Journal of Sound and Vibration, 1997, 202 (3): 375-394. doi: 10.1006/jsvi.1996.0833
    [26] YANG X, SWAMIDAS A, SESHADRI R. Crack identification in vibrating beams using the energy method[J]. Journal of Sound and Vibration, 2001, 244 (2): 339-357. doi: 10.1006/jsvi.2000.3498
    [27] 王开文, 严隽耄. 机车车辆广义轮轨重力效应分析[J]. 铁道学报, 1996, 18 (3): 37-43. doi: 10.3321/j.issn:1001-8360.1996.03.006

    WANG Kai-wen, YAN Jun-mao. The generalized wheel/rail gravitational effects of railway vehicles[J]. Journal of the China Railway Society, 1996, 18 (3): 37-43. (in Chinese). doi: 10.3321/j.issn:1001-8360.1996.03.006
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  191
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-11
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回