留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城轨高架环境噪声特性与不同频段能量

李莉 尹铁锋 朱茜 罗雁云

李莉, 尹铁锋, 朱茜, 罗雁云. 城轨高架环境噪声特性与不同频段能量[J]. 交通运输工程学报, 2018, 18(2): 120-128. doi: 10.19818/j.cnki.1671-1637.2018.02.013
引用本文: 李莉, 尹铁锋, 朱茜, 罗雁云. 城轨高架环境噪声特性与不同频段能量[J]. 交通运输工程学报, 2018, 18(2): 120-128. doi: 10.19818/j.cnki.1671-1637.2018.02.013
LI Li, YIN Tie-feng, ZHU Qian, LUO Yan-yun. Characteristics and energies in different frequency bands of environmental noise in urban elevated rail[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 120-128. doi: 10.19818/j.cnki.1671-1637.2018.02.013
Citation: LI Li, YIN Tie-feng, ZHU Qian, LUO Yan-yun. Characteristics and energies in different frequency bands of environmental noise in urban elevated rail[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 120-128. doi: 10.19818/j.cnki.1671-1637.2018.02.013

城轨高架环境噪声特性与不同频段能量

doi: 10.19818/j.cnki.1671-1637.2018.02.013
基金项目: 

国家自然科学基金项目 51408434

国家自然科学基金项目 51678446

国家自然科学基金项目 11772230

国家留学基金委管理委员会项目 201706265022

详细信息
    作者简介:

    李莉(1974-), 女, 山东济南人, 同济大学副研究员, 工学博士, 从事轨道交通减振降噪研究

  • 中图分类号: U239.5

Characteristics and energies in different frequency bands of environmental noise in urban elevated rail

More Information
  • 摘要: 测试了某城市地铁1号线一期高架线路普通整体道床无声屏障和道床垫式浮置板道床全声屏障区段的桥侧环境噪声, 分析了桥侧各测点的A计权总声压级与1/3频程线性声压级, 绘制了线性声压级云图, 研究了各频段噪声能量比例。分析结果表明: 道床垫式浮置板道床全声屏障能有效降低噪声源强处与桥侧环境噪声, 降噪效果、能量分布与频段和测点位置有关; 在桥面高度相近的测点, 降噪效果随距线路中心线距离的增大而减小, 而在近地面的测点, 降噪效果随距线路中心线距离的增大而增大; 降噪效果在中高频段明显大于低频段; 在1/3频程中心频率为20.0~31.5 Hz时, 距离线路中心线55.0 m处, 道床垫式浮置板道床全声屏障区段的线性声压级较普通整体道床无声屏障区段大0.82~6.96 dB; 在普通整体道床无声屏障区段, 在高出地面1.2、9.8 m处, 噪声能量以低于200 Hz为主, 在高出地面11.3 m处, 噪声能量以250~400 Hz为主, 在高出地面12.8 m处, 噪声能量以400~1 000 Hz为主; 在高出地面11.3 m处与200 Hz以下范围内, 普通整体道床无声屏障和道床垫式浮置板道床全声屏障区段的噪声能量持平; 在道床垫式浮置板道床全声屏障区段, 低于200 Hz的桥侧噪声能量较高, 因此, 建议根据高架桥旁敏感点的具体位置采取针对性减振降噪措施, 并重点关注低频噪声失去中高频噪声的遮蔽后尤显突出的问题。

     

  • 图  1  测点布置(单位: m)

    Figure  1.  Measuring points layout (unit: m)

    图  2  噪声源强处的噪声频谱对比

    Figure  2.  Frequency spectrum comparison at noise source strength point

    图  3  距地面高1.2m处声压级对比

    Figure  3.  Sound pressure level comparison of 1.2m height from ground

    图  4  距地面高9.8m处声压级对比

    Figure  4.  Sound pressure level comparison of 9.8m height from ground

    图  5  距地面高11.3m处声压级对比

    Figure  5.  Sound pressure level comparison of11.3mheight from ground

    图  6  距地面高12.8m处声压级对比

    Figure  6.  Sound pressure level comparison of12.8mheight from ground

    图  7  工况1桥侧噪声线性声压级

    Figure  7.  Linear sound pressure level of bridge side noise of condition 1

    图  8  工况2桥侧噪声线性声压级

    Figure  8.  Linear sound pressure level of bridge side noise of condition 2

    图  9  距地面高1.2m处噪声不同频率范围的能量比例

    Figure  9.  Noise energy ratios in different frequency range of 1.2mheight from ground

    图  10  距地面高9.8m处噪声不同频率范围的能量比例

    Figure  10.  Noise energy ratios in different frequency range of 9.8mheight from ground

    图  11  距地面高11.3m处噪声不同频率范围的能量比例

    Figure  11.  Noise energy ratios in different frequency range of 11.3mheight from ground

    图  12  距地面高12.8m处噪声不同频率范围的能量比例

    Figure  12.  Noise energy ratios in different frequency range of 12.8mheight from ground

    表  1  测试现场条件

    Table  1.   Test site conditions

    下载: 导出CSV

    表  2  桥侧噪声A计权总声压级

    Table  2.   A-weighted total sound pressure level of bridge side dB

    下载: 导出CSV
  • [1] ALVES-PEREIRA M, BRANCO N A A C. Public health and noise exposure: the importance of low frequency noise[C]∥Turkish Acoustical Society. 36th International Congress and Exhibition on Noise Control Engineering. Istanbul: Turkish Acoustical Society, 2007: 3460-3469.
    [2] WAVE K P, RYLANDER R. The prevalence of annoyance and effects after long-term exposure to low-frequency noise[J]. Journal of Sound and Vibration, 2001, 240 (3): 483-497. doi: 10.1006/jsvi.2000.3251
    [3] WAVE K P, RYLANDER R, BENTON S, et al. Effects on performance and work quality due to low frequency ventilation noise[J]. Journal of Sound and Vibration, 1997, 205 (4): 467-474. doi: 10.1006/jsvi.1997.1013
    [4] 孟苏北. 城市住宅区低频噪声对人类健康的危害[J]. 中国医药导报, 2007, 4 (35): 17-19. doi: 10.3969/j.issn.1673-7210.2007.35.008

    MENG Su-bei. Harm to human health from low frequency noise in city residential area[J]. China Medical Herald, 2007, 4 (35): 17-19. (in Chinese). doi: 10.3969/j.issn.1673-7210.2007.35.008
    [5] BERGLUND B, LINDVALL T, SCHEWELA D H. Guidelines for community noise[R]. Geneva: World Health Organization, 2000.
    [6] 贾丽, 卢向明, 翟国庆, 等. 用社会声学调查方法研究居住区噪声烦恼阀值[J]. 中国环境科学, 2008, 28 (10): 955-960. doi: 10.3321/j.issn:1000-6923.2008.10.018

    JIA Li, LU Xiang-ming, DI Guo-qing, et al. Investigation on the noise annoyance threshold in residential areas by socioacoustic surveys[J]. China Environmental Science, 2008, 28 (10): 955 -960. (in Chinese). doi: 10.3321/j.issn:1000-6923.2008.10.018
    [7] 蒋伟康, 闫肖杰. 城市轨道交通噪声的声源特性研究进展[J]. 环境污染与防治, 2009, 31 (12): 64-69. doi: 10.3969/j.issn.1001-3865.2009.12.028

    JIANG Wei-kang, YAN Xiao-jie. Some investigation of noise from urban railway transit[J]. Environmental Pollution and Control, 2009, 31 (12): 64-69. (in Chinese). doi: 10.3969/j.issn.1001-3865.2009.12.028
    [8] 李洪强, 吴小萍. 城市轨道交通噪声及其控制研究[J]. 噪声与振动控制, 2007, 27 (5): 78-82. doi: 10.3969/j.issn.1006-1355.2007.05.022

    LI Hong-qiang, WU Xiao-ping. Study on noise and control measures caused by urban rail transit[J]. Noise and Vibration Control, 2007, 27 (5): 78-82. (in Chinese). doi: 10.3969/j.issn.1006-1355.2007.05.022
    [9] 王巧燕, 翟国庆, 朱艺婷, 等. 不同行驶条件下轨道交通噪声频率特性比较研究[J]. 噪声与振动控制, 2008, 28 (2): 85-86, 106. doi: 10.3969/j.issn.1006-1355.2008.02.025

    WANG Qiao-yan, DI Guo-qing, ZHU Yi-ting, et al. Study of frequency characteristics of rail traffic noise on different running conditions[J]. Noise and Vibration Control, 2008, 28 (2): 85-86, 106. (in Chinese). doi: 10.3969/j.issn.1006-1355.2008.02.025
    [10] 雷晓燕, 刘林芽, 练松良. 轨道交通噪声计算方法研究[J]. 噪声与振动控制, 2006, 26 (1): 49-51, 59. doi: 10.3969/j.issn.1006-1355.2006.01.015

    LEI Xiao-yan, LIU Lin-ya, LIAN Song-liang. The study of the calculational methods on noises induced by the rail transit[J]. Noise and Vibration Control, 2006, 26 (1): 49-51, 59. (in Chinese). doi: 10.3969/j.issn.1006-1355.2006.01.015
    [11] 张博, 黄震宇, 陈大跃. 高架桥轨道系统的噪声源识别[J]. 噪声与振动控制, 2006, 26 (1): 46-48, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200601015.htm

    ZHANG Bo, HUANG Zhen-yu, CHEN Da-yue. Identification on the source of the noise from viaduct transportation system[J]. Noise and Vibration Control, 2006, 26 (1): 46-48, 63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200601015.htm
    [12] REMINGTON P J. Wheel/rail noise—part IV: rolling noise[J]. Journal of Sound and Vibration, 1976, 46 (3): 419-436. doi: 10.1016/0022-460X(76)90864-6
    [13] THOMPSON D J, JONES C J C. A review of the modelling of wheel/rail noise generation[J]. Journal of Sound and Vibration, 2000, 231 (3): 519-536.
    [14] TALOTTE C, GAUTIER P E, THOMPSON D J, et al. Identification, modelling and reduction potential of railway noise sources: a critical survey[J]. Journal of Sound and Vibration, 2003, 267 (3): 447-468. doi: 10.1016/S0022-460X(03)00707-7
    [15] THOMPSON D J. The influence of the contact zone on the excitation of wheel/rail noise[J]. Journal of Sound and Vibration, 2003, 267 (3): 523-535. doi: 10.1016/S0022-460X(03)00712-0
    [16] KITAGAWA T, THOMPSON D J. Comparison of wheel/rail noise radiation on Japanese railways using the TWINS model and microphone array measurements[J]. Journal of Sound and Vibration, 2006, 293 (3-5): 496-509. doi: 10.1016/j.jsv.2005.08.037
    [17] FORD R A J, THOMPSON D J. Simplified contact filters in wheel/rail noise prediction[J]. Journal of Sound and Vibration, 2006, 293 (3-5): 807-818.
    [18] SHENG X, THOMPSON D J, JONES C J C, et al. Simulations of roughness initiation and growth on railway rails[J]. Journal of Sound and Vibration, 2006, 293 (3-5): 819-829.
    [19] SONG X D, WU D J, LI Q, et al. Structure-borne lowfrequency noise from multi-span bridges: aprediction method and spatial distribution[J]. Journal of Sound and Vibration, 2016, 367: 114-128.
    [20] ZHANG Xun, LI Xiao-zhan, HAO Hong, et al. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: its mechanism, prediction and countermeasures[J]. Journal of Sound and Vibration, 2016, 367: 129-144.
    [21] NGAI K W, NG C F, LEE R Y Y. Noise and vibration spectrum of structure-borne noise from railway system[J]. HKIE Transactions Hong Kong Institution of Engineers, 2002, 9 (2): 12-17.
    [22] NGAI K W, NG C F. Structure-borne noise and vibration of concrete box structure and rail viaduct[J]. Journal of Sound and Vibration, 2002, 255 (2): 281-297.
    [23] 刘海平. 高速铁路轮轨滚动噪声建模、预测与控制研究[D]. 上海: 上海交通大学, 2011.

    LIU Hai-ping. A study on modelling, prediction and its control of wheel/rail rolling noises in high speed railway[D]. Shanghai: Shanghai Jiaotong University, 2011. (in Chinese).
    [24] 马心坦. 轮轨滚动噪声预测与控制研究[D]. 北京: 北京交通大学, 2007.

    MA Xin-tan. Investigation on prediction and control of railway wheel-rail rolling noise[D]. Beijing: Beijing Jiaotong University, 2007. (in Chinese).
    [25] LANDSTROM U, AKERLUND E, KJELLBERG A, et al. Exposure levels, tonal components, and noise annoyance in working environments[J]. Environment International, 1995, 21 (3): 265-275.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  153
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-21
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回