留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单目视觉的轨道固定桩基准点测量方法

傅勤毅 胡杰华

傅勤毅, 胡杰华. 基于单目视觉的轨道固定桩基准点测量方法[J]. 交通运输工程学报, 2018, 18(2): 129-138. doi: 10.19818/j.cnki.1671-1637.2018.02.014
引用本文: 傅勤毅, 胡杰华. 基于单目视觉的轨道固定桩基准点测量方法[J]. 交通运输工程学报, 2018, 18(2): 129-138. doi: 10.19818/j.cnki.1671-1637.2018.02.014
FU Qin-yi, HU Jie-hua. Measurement method of reference points of railway fixed pile based on monocular vision[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 129-138. doi: 10.19818/j.cnki.1671-1637.2018.02.014
Citation: FU Qin-yi, HU Jie-hua. Measurement method of reference points of railway fixed pile based on monocular vision[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 129-138. doi: 10.19818/j.cnki.1671-1637.2018.02.014

基于单目视觉的轨道固定桩基准点测量方法

doi: 10.19818/j.cnki.1671-1637.2018.02.014
基金项目: 

国家自然科学基金项目 51605495

国家自然科学基金项目 61271356

国家自然科学基金项目 51575541

中国铁路总公司科技研究开发计划课题 2017G002-E

详细信息
    作者简介:

    傅勤毅(1968-), 男, 湖南浏阳人, 中南大学教授, 工学博士, 从事传感器与铁道测量方法研究

    胡杰华(1990-), 女, 湖北麻城人, 深圳市图敏智能视频股份有限公司工程师

  • 中图分类号: U216.3

Measurement method of reference points of railway fixed pile based on monocular vision

More Information
  • 摘要: 为了提高铁路线路固定桩基准点绝对坐标测量的效率, 提出了一种新的测量方法; 建立了无合作目标的单点测量模型, 采用单目相机采集激光靶标图像, 利用光饱和点重心法提取激光光斑中心; 研究了平面直线成像规律, 构造了基于正交直线的单应性矩阵求解方法, 并对图像进行透视畸变校正; 根据校正后的图像与靶标的几何相似关系, 计算了激光光斑与靶标的横、纵向偏差; 在室内环境下, 进行了靶标图片拍摄的正交试验, 计算与比较了横、纵向偏差。试验结果表明: 在激光光斑和靶标固定的条件下, 保持相机与靶标的距离不变, 改变相机角度拍摄图片, 经过透视变换校正后, 横、纵向偏差与期望偏差分别为0.082、0.254mm; 相机拍摄角度固定, 改变相机与靶标距离拍摄图片, 经过透视变换校正后, 横、纵向偏差与期望偏差分别为0.126、0.014mm; 在相机的角度、相机与靶标的距离都改变的情况下, 拍摄的图片经过透视变换校正后, 横、纵向偏差与期望偏差分别为0.329、0.064mm; 可见3组试验的横、纵向偏差与期望偏差的误差均小于0.5mm; 系统的水平距离测量误差范围为±1.52mm, 高程测量误差范围为±0.67mm, 根据轨道检查仪性能指标, 线路水平距离误差范围为±3.0mm, 高程误差范围为±2.5mm, 因此, 本文的测量方法精度满足轨道测量要求。水平距离测量误差完全由激光测距仪和倾角传感器决定, 而高程测量误差是由激光测距仪、倾角传感器与激光点和靶心的偏移量共同决定的。

     

  • 图  1  轨道基准点的绝对测量原理

    Figure  1.  Absolute measuring principle of railway reference points

    图  2  靶标平面成像过程

    Figure  2.  Imaging process of target plane

    图  3  特征点提取

    Figure  3.  Extraction of feature points

    图  4  透视校正前后的靶标图像

    Figure  4.  Target image before and after perspective correction

    图  5  无合作目标基准点测量系统

    Figure  5.  Measurement system without cooperative target datum points

    图  6  试验1图像处理结果

    Figure  6.  Image processing result of experiment 1

    图  7  试验2图像处理结果

    Figure  7.  Image processing result of experiment 2

    图  8  试验3图像处理结果

    Figure  8.  Image processing result of experiment 3

  • [1] 任轶南. 基于现代检测技术的高速铁路曲线状态评价与整正方法[D]. 成都: 西南交通大学, 2014.

    REN Yi-nan. Based on evaluation of the state of modem highspeed rail curve detection technology and correction methods[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese).
    [2] 姚连璧, 孙海丽, 王璇, 等. 基于激光跟踪仪的轨道静态平顺性检测系统[J]. 同济大学学报: 自然科学版, 2016, 44 (8): 1260-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201608018.htm

    YAO Lian-bi, SUN Hai-li, WANG Xuan, et al. Detecting system of track static regularities based on the laser tracker[J]. Journal of Tongji University: Natural Science, 2016, 44 (8): 1260-1265. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201608018.htm
    [3] 朱洪涛, 徐宜敏, 吴维军. 全站仪免置平自由设站及其测量方法[J]. 铁道标准设计, 2013 (6): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201306008.htm

    ZHU Hong-tao, XU Yi-min, WU Wei-jun. Free stationing and its surveying method for electronic total station without manual leveling[J]. Railway Standard Design, 2013 (6): 25-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201306008.htm
    [4] IOANNOU D, HUDA W, LAINE A F. Circle recognition through a 2D Hough Transform and radius histogramming[J]. Image and Vision Computing, 1999, 17 (1): 15-26. doi: 10.1016/S0262-8856(98)00090-0
    [5] 闵永智, 康飞, 党建武, 等. 无砟轨道沉降监测系统光斑中心定位技术研究[J]. 铁道学报, 2014, 36 (2): 81-85. doi: 10.3969/j.issn.1001-8360.2014.02.013

    MIN Yong-zhi, KANG Fei, DANG Jian-wu, et al. Technology of light spot center positioning of ballastless track settlement monitoring system[J]. Journal of the China Railway Society, 2014, 36 (2): 81-85. (in Chinese). doi: 10.3969/j.issn.1001-8360.2014.02.013
    [6] 王会峰, 汪大宝, 刘上乾. 激光靶标图像识别和测量方法研究[J]. 激光与红外, 2007, 37 (6): 564-566, 574. doi: 10.3969/j.issn.1001-5078.2007.06.023

    WANG Hui-feng, WANG Da-bao, LIU Shang-qian. Research on auto identify and measurement approach of laser target image[J]. Laser and Infrared, 2007, 37 (6): 564-566, 574. (in Chinese). doi: 10.3969/j.issn.1001-5078.2007.06.023
    [7] 孔兵, 王昭, 谭玉山. 基于圆拟合的激光光斑中心检测算法[J]. 红外与激光工程, 2002, 31 (3): 275-279. doi: 10.3969/j.issn.1007-2276.2002.03.020

    KONG Bing, WANG Zhao, TAN Yu-shan. Algorithm of laser spot detection based on circle fitting[J]. Infrared and Laser Engineering, 2002, 31 (3): 275-279. (in Chinese). doi: 10.3969/j.issn.1007-2276.2002.03.020
    [8] 章秀华, 杨坤涛. 一种改进的二维Hough变换提取激光光斑参数方法[J]. 激光与红外, 2006, 36 (10): 995-997. doi: 10.3969/j.issn.1001-5078.2006.10.023

    ZHANG Xiu-hua, YANG Kun-tao. An improved 2D Hough transform method for extracting laser spot parameter[J]. Laser and Infrared, 2006, 36 (10): 995-997. (in Chinese). doi: 10.3969/j.issn.1001-5078.2006.10.023
    [9] 王丽丽, 胡中文, 季杭馨. 基于高斯拟合的激光光斑中心定位算法[J]. 应用光学, 2012, 33 (5): 985-990. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201205033.htm

    WANG Li-li, HU Zhong-wen, JI Hang-xin. Laser spot center location algorithm based on Gaussian fitting[J]. Journal of Applied Optics, 2012, 33 (5): 985-990. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201205033.htm
    [10] FAN Yi-yan, ZHAO Bin. Combined non-contact coordinate measurement system and calibration method[J]. Optics and Laser Technology, 2015, 70: 100-105. doi: 10.1016/j.optlastec.2015.01.001
    [11] ARULMOZHI K, ARUMUGA PERUMAL S, THANOOJA PRIYADARSINI C S, et al. Image refinement using skew angle detection and correction for Indian license plates[C]//IEEE. 2012IEEE International Conference on Computational Intelligence and Computing Research. New York: IEEE, 2012: 1-4.
    [12] GONG Li-xia, HU Hong-ping, BAI Yan-ping. Vehicle license plate slant correction based on mathematical morphology and Radon transformation[C]//IEEE. 6th International Conference on Natural Computation. New York: IEEE, 2010: 3457-3461.
    [13] 刘慧娟. 快速响应码图像的全方位识别[J]. 仪器仪表学报, 2006, 27 (4): 376-379, 388. doi: 10.3321/j.issn:0254-3087.2006.04.011

    LIU Hui-juan. Omnidirectional recognition of quick response code image[J]. Chinese Journal of Scientific Instrument, 2006, 27 (4): 376-379, 388. (in Chinese). doi: 10.3321/j.issn:0254-3087.2006.04.011
    [14] SEEDAHMED G H. Direct retrieval of exterior orientation parameters using a 2D projective transformation[J]. Photogrammetric Record, 2006, 21 (115): 211-231. doi: 10.1111/j.1477-9730.2006.00381.x
    [15] SHAN Jian, SHI Yuan-yuan, LIU Jia, et al. Comparative study of linear feature transformation techniques for mandarin digit string recognition[C]//ISCA Archive. The 2th International Symposium on Chinese Spoken Language Processing. Hong Kong: SIG-CSLP, 2002: 1-4.
    [16] EL-ASHMAWY K L A. A comparison study between collinearity condition, coplanarity condition, and direct linear transformation (DLT) method for camera exterior orientation parameters determination[J]. Geodesy and Cartography, 2015, 41 (2): 66-73. doi: 10.3846/20296991.2015.1051335
    [17] LONGUET-HIGGINS H C. A computer algorithm for reconstructing a scene from two projections[J]. Nature, 1981, 293: 133-135. doi: 10.1038/293133a0
    [18] HARRIS C, STEPHENS M. A combined corner and edge detector[C]//TAYLOR C J. Proceedings of the 4th Alvey Vision Conference. Manchester: AVC, 1988: 147-151.
    [19] SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23 (1): 45-78. doi: 10.1023/A:1007963824710
    [20] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [21] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[J]. Lecture Notes in Computer Science, 2006, 3951: 404-417.
    [22] TOLA E, LEPETIT V, FUA P. DAISY: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (5): 815-830. doi: 10.1109/TPAMI.2009.77
    [23] 袁春兰, 熊宗龙, 周雪花, 等. 基于Sobel算子的图像边缘检测研究[J]. 激光与红外, 2009, 39 (1): 85-87. doi: 10.3969/j.issn.1001-5078.2009.01.023

    YUAN Chun-lan, XIONG Zong-long, ZHOU Xue-hua, et al. Study of infrared image edge detection based on Sobel operator[J]. Laser and Infrared, 2009, 39 (1): 85-87. (in Chinese). doi: 10.3969/j.issn.1001-5078.2009.01.023
    [24] MIKOLAJCZYK K, SCHMID C. Scale and affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60 (1): 63-86. doi: 10.1023/B:VISI.0000027790.02288.f2
    [25] 柳晨光, 初秀民, 谢朔, 等. 基于单目视觉的水面船舶多目标定位方法[J]. 交通运输工程学报, 2015, 15 (5): 91-100. doi: 10.3969/j.issn.1671-1637.2015.05.012

    LIU Chen-guang, CHU Xiu-min, XIE Shuo, et al. Multitarget locating method of surface ship based on monocular vision[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (5): 91-100. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.05.012
    [26] LU Ping-ping, LIU Qing, GUO Jian-ming. Camera calibration implementation based on Zhang Zhengyou plane method[J]. Lecture Notes in Electrical Engineering, 2016, 359: 29-40.
  • 加载中
图(8)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  103
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-21
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回