留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态概率网格和贝叶斯决策网络的车辆变道辅助驾驶决策方法

惠飞 穆柯楠 赵祥模

惠飞, 穆柯楠, 赵祥模. 基于动态概率网格和贝叶斯决策网络的车辆变道辅助驾驶决策方法[J]. 交通运输工程学报, 2018, 18(2): 148-158. doi: 10.19818/j.cnki.1671-1637.2018.02.016
引用本文: 惠飞, 穆柯楠, 赵祥模. 基于动态概率网格和贝叶斯决策网络的车辆变道辅助驾驶决策方法[J]. 交通运输工程学报, 2018, 18(2): 148-158. doi: 10.19818/j.cnki.1671-1637.2018.02.016
HUI Fei, MU Ke-nan, ZHAO Xiang-mo. Assistant driving decision method of vehicle lane change based on dynamic probability grid and Bayesian decision network[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 148-158. doi: 10.19818/j.cnki.1671-1637.2018.02.016
Citation: HUI Fei, MU Ke-nan, ZHAO Xiang-mo. Assistant driving decision method of vehicle lane change based on dynamic probability grid and Bayesian decision network[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 148-158. doi: 10.19818/j.cnki.1671-1637.2018.02.016

基于动态概率网格和贝叶斯决策网络的车辆变道辅助驾驶决策方法

doi: 10.19818/j.cnki.1671-1637.2018.02.016
基金项目: 

国家自然科学基金项目 61603058

300102328108 中央高校基本科研业务费专项资金项目

详细信息
    作者简介:

    惠飞(1982-), 男, 安徽濉溪人, 长安大学副教授, 工学博士, 从事车联网与智能交通系统研究

    穆柯楠(1990-), 女, 陕西西安人, 长安大学工程师, 工学博士

  • 中图分类号: U492.84

Assistant driving decision method of vehicle lane change based on dynamic probability grid and Bayesian decision network

More Information
  • 摘要: 提出了一种车辆变道辅助决策方法, 向驾驶人提供变道行为决策; 构建了由车载GPS、相机传感器和雷达组成的行车环境信息传感装置, 利用非采样B样条曲线模型对车道线建模, 通过控制点位置求解与搜索策略实现车道线的检测、跟踪与类型识别; 根据车道线信息确立有效行车区域, 并建立了一种动态概率网格的行车环境几何模型, 对有效行车区域进行紧凑型表征; 考虑了车辆对行车环境表征结果可靠性的影响, 根据高斯分布将车辆位置信息映射到动态概率网格中, 计算了每个行车单元的占用概率; 将车道线信息与网格单元占用概率作为初始节点状态参数, 输入贝叶斯决策网络, 估计概率网格单元的占用状态, 量化输出当前行车环境表征结果以及不变道、向左变道、向右变道3种变道决策的期望效用值, 通过计算各决策的期望效用值比率确定最优变道决策。试验结果表明: 在场景1中“向左变道”决策的期望效用值最大, 为0.70, 视为最优决策, 在其动态概率网格中, 右侧车道线“实线”状态参数为100.00%, 因此, “向右变道”决策效用期望值最小, 决策系统输出的最优决策“不变道”符合中国交通法规, 也表明检测车道线类型的必要性; 场景2的“不变道”和“向右变道”决策期望效用值分别为0.43和0.44, 比率接近1, 无法判断最优决策, 驾驶人可根据经验决定是否变道。

     

  • 图  1  试验车辆的环境感知装置

    Figure  1.  Environmental perception device of test vehicle

    图  2  无遮挡车道线检测分类结果

    Figure  2.  Detecting and sorting result of lane lines without occlusions

    图  3  有遮挡车道线检测分类结果

    Figure  3.  Detecting and sorting result of lane lines with occlusions

    图  4  直车道动态概率网格几何模型

    Figure  4.  Geometric model of dynamic probability grid of straight lane

    图  5  弯车道动态概率网格几何模型

    Figure  5.  Geometric model of dynamic probability grid of curve lane

    图  6  车辆位置

    Figure  6.  Locations of vehicles

    图  7  车辆占用面积的高斯分布

    Figure  7.  Gaussian distribution of occupied area by one vehicle

    图  8  安全距离中的单元确定

    Figure  8.  Cells comfirmation in safe distance

    图  9  采用Bresenham算法确定本车安全距离内的单元

    Figure  9.  Cells in safe distance of ego-vehicle determined by Bresenham algorithm

    图  10  场景1车道检测

    Figure  10.  Lane detection in scene 1

    图  11  场景1行车环境动态概率网格表征结果

    Figure  11.  Dynamic probability grid description result of driving environment in scene 1

    图  12  场景1决策网络

    Figure  12.  Decisions network in scene 1

    图  13  场景2车道检测

    Figure  13.  Lane detection in scene 2

    图  14  场景2行车环境动态概率网格表征结果

    Figure  14.  Dynamic probability grid description result of driving environment in scene 2

    图  15  场景2决策网络

    Figure  15.  Decisions network in scene 2

    表  1  单元状态的判定规则

    Table  1.   Criterion rules of cell's states

    下载: 导出CSV

    表  2  机会节点的状态概率参数

    Table  2.   State probability parameters of chance nodes

    下载: 导出CSV

    表  3  车道线类型概率

    Table  3.   Probabilities of lane lines'types

    下载: 导出CSV
  • [1] TAWARI A, SIVARAMAN S, TRIVEDI M M, et al. Looking-in and looking-out vision for urban intelligent assistance: estimation of driver attentive state and dynamic surround for safe merging and braking[C]//IEEE. 25th IEEE Intelligent Vehicles Symposium. New York: IEEE, 2014: 115-120.
    [2] CONCEIOL, ROSSETTI R J F. Multivariate modelling for autonomous vehicles: research trends in perspective[C]//IEEE. 19th International Conference on Intelligent Transportation Systems. New York: IEEE, 2016: 83-87.
    [3] MUNIR A. Safety assessment and design of dependable cybercars: for today and the future[J]. IEEE Consumer Electronics Magazine, 2017, 6 (2): 69-77. doi: 10.1109/MCE.2016.2640738
    [4] MUNIR A, KOUSHANFAR F. Design and performance analysis of secure and dependable cybercars: a steer-by-wire case study[C]//IEEE. 13th IEEE Annual Consumer Communications and Networking Conference. New York: IEEE, 2016: 1066-1073.
    [5] ZHU Gang, YANG Ming, LI Hao, et al. Curvature mapbased magnetic guidance for automated vehicles in an urban environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (12): 3541-3552. doi: 10.1109/TITS.2016.2557066
    [6] WANG Fei-yue, YANG Liu-qing, YANG Jian, et al. Urban intelligent parking system based on the parallel theory[C]//IEEE. 2006International Conference on Computing, Networking and Communications. New York: IEEE, 2016: 1-5.
    [7] 穆柯楠. 基于车-路视觉协同的行车环境感知方法研究[D]. 西安: 长安大学, 2016.

    MU Ke-nan. Research on the driving environment perception method based on visual cooperative vehicle-infrastructure system[D]. Xi'an: Chang'an University, 2016. (in Chinese).
    [8] 康俊民, 赵祥模, 徐志刚. 无人车行驶环境特征分类方法[J]. 交通运输工程学报, 2016, 16 (6): 140-148. http://transport.chd.edu.cn/article/id/201606017

    KANG Jun-min, ZHAO Xiang-mo, XU Zhi-gang. Classification method of running environment features for unmanned vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (6): 140-148. (in Chinese). http://transport.chd.edu.cn/article/id/201606017
    [9] SUHR J K, JUNG H G. Sensor fusion-based vacant parking slot detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (1): 21-36. doi: 10.1109/TITS.2013.2272100
    [10] MOSQUET X, ANDERSEN M, ARORA A. A roadmap to safer driving through advanced driver assistance systems[R]. Washington DC: MEMA, 2015.
    [11] VELEZ G, OTAEGUI O. Embedding vision-based advanced driver assistance systems: a survey[J]. IET Intelligent Transport Systems, 2017, 11 (3): 103-112. doi: 10.1049/iet-its.2016.0026
    [12] SIVARAMAN S, TRIVEDI M M. Dynamic probabilistic drivability maps for lane change and merge driver assistance[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (5): 2063-2073. doi: 10.1109/TITS.2014.2309055
    [13] SCHUBERT R, SCHULZE K, WANIELIK G. Situation assessment for automatic lane-change maneuvers[J]. IEEE Transactions onIntelligent Transportation Systems, 2010, 11 (3): 607-616. doi: 10.1109/TITS.2010.2049353
    [14] NGUYEN T N, MICHAELIS B, AL-HAMADI A, et al. Stereo-camera-based urban environment perception using occupancy grid and object tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (1): 154-165. doi: 10.1109/TITS.2011.2165705
    [15] PABLO M, JORGE B, AHMED H, et al. Stereo visionbased local occupancy grid map for autonomous navigation in ROS[C]//VISAPP. 11th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Setúbal: VISAPP, 2016: 703-708.
    [16] OH S I, KANG Hang-bong. Fast occupancy grid filtering using grid cell clusters from LIDAR and stereo vision sensor data[J]. IEEE Sensors Journal, 2016, 16 (19): 7258-7266. doi: 10.1109/JSEN.2016.2598600
    [17] NADARAJAN P, BOTSCH M, SARDINA S. Predictedoccupancy grids for vehicle safety applications based on autoencoders and the Random Forest algorithm[C]//IEEE. 2017International Joint Conference on Neural Networks. New York: IEEE, 2017: 1244-1251.
    [18] NADARAJAN P, BOTSCH M. Probability estimation for predicted-occupancy grids in vehicle safety applications based on machine learning[C]//IEEE. 2016Intelligent Vehicles Symposium. New York: IEEE, 2016: 1285-1292.
    [19] DANESCU R, ONIGA F, NEDEVSCHI S. Modeling and tracking the driving environment with a particle-based occupancy grid[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (4): 1331-1342. doi: 10.1109/TITS.2011.2158097
    [20] ONIGA F, NEDEVSCHI S. Processing dense stereo data using elevation maps: road surface, traffic isle, and obstacle detection[J]. IEEE Transportations on Vehicle Technology, 2010, 59 (3): 1172-1182. doi: 10.1109/TVT.2009.2039718
    [21] OTTO C, LEON F P. Long-term trajectory classification and prediction of commercial vehicles for the application in advanced driver assistance systems[C]//IEEE. 2012 American Control Conference. New York: IEEE, 2012: 2904-2909.
    [22] GE Y E, XU C F, SZETO W Y, et al. Investigating freeway traffic hypercongestion between an on-ramp and its immediate upstream off-ramp[J]. Transportmetrica A: Transport Science, 2015, 11 (3): 187-209. doi: 10.1080/23249935.2014.945509
    [23] SCHREIER M, WILLERT V, ADAMY J. Bayesian, maneuverbased, long-term trajectory prediction and criticality assessment for driver assistance systems[C]//IEEE. 17th IEEE International Conference on Intelligent Transportation Systems. New York: IEEE, 2014: 334-341.
    [24] TRUONG Q B, LEE B R, HEO N G, et al. Lane boundaries detection algorithm using vector lane concept[C]//IEEE. 10th International Conference on Control, Automation, Robotics and Vision. New York: IEEE, 2009: 2319-2325.
    [25] SHANMUGASUNDAR G, SIVARAMAKRISHNAN R, BALASUBRAMANI S. Method of trajectory generation of a generic robot using Bresenham's circle algorithm[J]. Indian Journal of Science and Technology, 2016, 9 (48): 1-6.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  102
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-09
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回