留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏聚区模型在沥青路面反射裂缝模拟中的应用

周正峰 蒲卓桁 刘超

周正峰, 蒲卓桁, 刘超. 黏聚区模型在沥青路面反射裂缝模拟中的应用[J]. 交通运输工程学报, 2018, 18(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.03.001
引用本文: 周正峰, 蒲卓桁, 刘超. 黏聚区模型在沥青路面反射裂缝模拟中的应用[J]. 交通运输工程学报, 2018, 18(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.03.001
ZHOU Zheng-feng, PU Zhuo-heng, LIU Chao. Application of cohesive zone model to simulate reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.03.001
Citation: ZHOU Zheng-feng, PU Zhuo-heng, LIU Chao. Application of cohesive zone model to simulate reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.03.001

黏聚区模型在沥青路面反射裂缝模拟中的应用

doi: 10.19818/j.cnki.1671-1637.2018.03.001
基金项目: 

国家自然科学基金项目 51608457

国家自然科学基金项目 51008255

交通运输部企业技术创新项目 2015 315 Q12 030

详细信息
    作者简介:

    周正峰(1981-), 男, 湖北荆州人, 西南交通大学副教授, 工学博士, 从事道路与机场工程研究

  • 中图分类号: U416.217

Application of cohesive zone model to simulate reflective crack of asphalt pavement

More Information
    Author Bio:

    ZHOU Zheng-feng(1981-), male, associate professor, PhD, zhouzf126@126.com

  • 摘要: 结合ABAQUS有限元软件, 分析了基于牵引力-分离法则的三维黏结单元本构模型与参数; 通过对单一黏结单元施加位移荷载, 对比了不同初始损伤与完全失效准则组合下, 加载过程中单元应力、位移和应变能的理论计算结果与数值模拟结果, 以验证黏结单元的可靠性; 将黏结单元布设在开裂基层上方沥青面层可能发生反射开裂的部位, 应用黏聚区模型模拟裂缝的发展过程, 研究了黏结单元参数和面层厚度对裂缝扩展的影响。分析结果表明: 当黏结层刚度由40GN·m-3下降到20GN·m-3时, 单侧荷载与对称荷载作用下黏结层中分离位移的比值由1.52增大到13.52, 单侧荷载作用下黏结层中剪切位移与张开位移的比值由1.52增大到11.32, 说明当潜在裂缝扩展区刚度降低时, 沥青层易于产生Ⅱ型剪切裂缝; 在交通荷载作用下, 沥青面层损伤开裂的路径为首先沥青面层底部发生损伤并向上发展, 随后路表轮载作用处附近发生损伤并向下发展, 在损伤贯穿沥青面层后, 潜在裂缝扩展区刚度的继续下降将使损伤沿道路横向继续扩展; 在面层厚度以2cm的梯度由16cm增加到22cm的过程中, 黏结层中分离位移分别降低了32.31%、15.22%、9.63%, 剪切位移与张开位移的比值由3.24降低到1.10, 说明增加面层厚度能有效延缓反射裂缝的扩展, 但此延缓效果随着面层厚度的增加而减弱, 并且使得面层反射开裂类型由Ⅱ型剪切型开裂逐渐趋于Ⅰ、Ⅱ型混合模式开裂。

     

  • 图  1  黏聚区模型

    Figure  1.  Cohesive zone model

    图  2  三维黏结单元

    Figure  2.  3Dcohesive element

    图  3  黏结单元失效对应的断裂模式

    Figure  3.  Corresponding fracture modes of cohesive element failure

    图  4  黏结单元双线性本构模型

    Figure  4.  Bilinear constitutive model of cohesive element

    图  5  组合准则Ⅰ的应力-位移曲线

    Figure  5.  Stress-displacement curves under combination ruleⅠ

    图  6  组合准则Ⅱ的应力-位移曲线

    Figure  6.  Stress-displacement curves under combination ruleⅡ

    图  7  组合准则Ⅲ的应力-位移曲线

    Figure  7.  Stress-displacement curves under combination ruleⅢ

    图  8  组合准则Ⅳ的应力-位移曲线

    Figure  8.  Stress-displacement curves under combination ruleⅣ

    图  9  组合准则Ⅰ的能量-位移曲线

    Figure  9.  Energy-displacement curves under combination ruleⅠ

    图  10  组合准则Ⅱ的能量-位移曲线

    Figure  10.  Energy-displacement curves under combination ruleⅡ

    图  11  组合准则Ⅲ的能量-位移曲线

    Figure  11.  Energy-displacement curves under combination ruleⅢ

    图  12  组合准则Ⅳ的能量-位移曲线

    Figure  12.  Energy-displacement curves under combination ruleⅣ

    图  13  总能量-有效位移曲线

    Figure  13.  Total energy-effective displacement curves

    图  14  沥青面层反射开裂分析模型

    Figure  14.  Analysis model of reflective cracking in asphalt surface layer

    图  15  轮载范围内路表弯沉对比

    Figure  15.  Comparison of road surface deflections in wheel areas

    图  16  不同荷位下黏结层最大有效位移对比

    Figure  16.  Comparison of maximum effective displacements in cohesive layers under different loading positions

    图  17  单侧荷载作用下黏结层最大位移对比

    Figure  17.  Comparison of maximum displacements in cohesive layers under unilateral loads

    图  18  不同刚度的黏结层损伤分布

    Figure  18.  Damage distributions in cohesive layers with various cohesive stiffnesses

    图  19  不同面层厚度下黏结层位移对比

    Figure  19.  Comparison of displacements in cohesive layers with various surface thicknesses

    表  1  单元验证组合准则

    Table  1.   Combination rules for element verification

    下载: 导出CSV

    表  2  单元初始损伤时的应力与位移理论值

    Table  2.   Theoretical values of stresses and displacements at element initiatial damage

    下载: 导出CSV

    表  3  单元完全失效时的位移与能量理论值

    Table  3.   Theoretical values of displacements and energies at element failure

    下载: 导出CSV
  • [1] 陈贵锋. 高等级公路沥青路面反射裂缝的分析与防治[J]. 重庆交通学院学报, 2003, 22 (3): 33-36. doi: 10.3969/j.issn.1674-0696.2003.03.009

    CHEN Gui-feng. The analysis and prevention of reflective cracking in asphalt pavement of expressway[J]. Journal of Chongqing Jiaotong University, 2003, 22 (3): 33-36. (in Chinese). doi: 10.3969/j.issn.1674-0696.2003.03.009
    [2] 李自林, 龚能飞, 栾小兵. 半刚性基层沥青路面温缩型反射裂缝的扩展机理分析[J]. 公路交通科技, 2008, 25 (1): 43-46, 63. doi: 10.3969/j.issn.1002-0268.2008.01.008

    LI Zi-lin, GONG Neng-fei, LUAN Xiao-bing. Development mechanism analysis of temperature shrinkage type reflective crack in asphalt pavement on semi-rigid base[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (1): 43-46, 63. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.01.008
    [3] 王金昌, 朱向荣. 面层与基层层间摩擦系数对应力强度因子影响的研究[J]. 岩石力学与工程学报, 2005, 24 (15): 2757-2764. doi: 10.3321/j.issn:1000-6915.2005.15.027

    WANG Jin-chang, ZHU Xiang-rong. Study on stress intensity factor affected by friction coefficient between surface layer and subbase[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (15): 2757-2764. (in Chinese). doi: 10.3321/j.issn:1000-6915.2005.15.027
    [4] 黄志义, 王金昌, 朱向荣. 含裂缝沥青混凝土路面的粘弹性断裂分析[J]. 中国公路学报, 2006, 19 (2): 18-23. doi: 10.3321/j.issn:1001-7372.2006.02.004

    HUANG Zhi-yi, WANG Jin-chang, ZHU Xiang-rong. Viscoelastic fracture analysis of asphalt concrete pavement with cracks[J]. China Journal of Highway and Transport, 2006, 19 (2): 18-23. (in Chinese). doi: 10.3321/j.issn:1001-7372.2006.02.004
    [5] ELSEIFI M, AL-QADI I L. A simplified overlay design model against reflective cracking utilizing service life prediction[J]. Road Materials and Pavement Design, 2004, 5 (2): 169-191. doi: 10.1080/14680629.2004.9689968
    [6] 金光来. 基于扩展有限元的沥青路面疲劳开裂行为的数值研究[D]. 南京: 东南大学, 2015.

    JIN Guang-lai. Numerical analysis of fatigue crack growth in asphalt pavement based on extended finite element model[D]. Nanjing: Southeast University, 2015. (in Chinese).
    [7] LING Jian-ming, TAO Ze-feng, QIAN Jin-song, et al. Investigation the influences of geotextile on reducing the thermal reflective cracking using XFEM[J]. International Journal of Pavement Engineering, 2018, 19 (5): 391-398. doi: 10.1080/10298436.2017.1402598
    [8] ISLAM M R, VALLEJO M J, TAREFDER R A. Crack propagation in hot mix asphalt overlay using extended finiteelement model[J]. Journal of Materials in Civil Engineering, 2017, 29 (5): 04016296-1-14. doi: 10.1061/(ASCE)MT.1943-5533.0001815
    [9] BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axiallysymmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23 (3): 434-444.
    [10] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7 (C): 55-129.
    [11] HILLERBORG A, MODER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6 (6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [12] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42 (42): 1397-1434.
    [13] GEUBELLE P H, BAYLOR J S. Impact-induced delamination of composites: a 2D simulation[J]. Composites Part B: Engineering, 1998, 29 (5): 589-602. doi: 10.1016/S1359-8368(98)00013-4
    [14] SONG S H, PAULINO G H, BUTTLAR W G. Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model[J]. Journal of Engineering Mechanics, 2006, 132 (11): 1215-1223. doi: 10.1061/(ASCE)0733-9399(2006)132:11(1215)
    [15] SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006, 73 (18): 2829-2848. doi: 10.1016/j.engfracmech.2006.04.030
    [16] SOARES J B, DE FREITAS F A C, ALLEN D H. Considering material heterogeneity in crack modeling of asphaltic mixtures[J]. Transportation Research Record, 2003 (1832): 113-120.
    [17] MU F, VANDENBOSSCHE J. A superimposed cohesive zone model for investigating the fracture properties of concrete-asphalt interface debonding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40 (4): 496-511. doi: 10.1111/ffe.12509
    [18] 钮凯健, 李昶. 基于内聚力模型的沥青路面低温缩裂数值模拟[J]. 公路交通科技, 2012, 29 (6): 11-15, 21. doi: 10.3969/j.issn.1002-0268.2012.06.003

    NIU Kai-jian, LI Chang. Numerical simulation of low-temperature shrinkage cracking of asphalt pavement based on cohesive zone model[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (6): 11-15, 21. (in Chinese). doi: 10.3969/j.issn.1002-0268.2012.06.003
    [19] PARK K, PAULINO G H, ROESLER J R. A unified potential-based cohesive model of mixed-mode fracture[J]. Journal of the Mechanics and Physics of Solids, 2009, 57 (6): 891-908. doi: 10.1016/j.jmps.2008.10.003
    [20] KIM Y R. Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: state-of-the-art review[J]. International Journal of Pavement Engineering, 2011, 12 (4): 343-356. doi: 10.1080/10298436.2011.575138
    [21] 张东. 基于内聚力模型的沥青路面断裂研究[D]. 南京: 东南大学, 2010.

    ZHANG Dong. Research on fracture of asphalt pavements based on cohesive zone model[D]. Nanjing: Southeast University, 2010. (in Chinese).
    [22] KIM H, WAGONER M P, BUTTLAR W G. Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model[J]. Journal of Materials in Civil Engineering, 2008, 20 (8): 552-563. doi: 10.1061/(ASCE)0899-1561(2008)20:8(552)
    [23] KIM H, WAGONER M P, BUTTLAR W G. Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model[J]. Construction and Building Materials, 2009, 23 (5): 2112-2120. doi: 10.1016/j.conbuildmat.2008.08.014
    [24] CAMANHO P P, DVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37 (16): 1415-1438. doi: 10.1177/0021998303034505
    [25] 王宏畅. 半刚性基层沥青路面反射裂缝扩展及寿命研究[J]. 交通运输系统工程与信息, 2012, 12 (2): 174-180. doi: 10.3969/j.issn.1009-6744.2012.02.027

    WANG Hong-chang. Reflective crack propagation and fatigue life of semi-rigid base asphalt pavement[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12 (2): 174-180. (in Chinese). doi: 10.3969/j.issn.1009-6744.2012.02.027
    [26] 朱洪洲, 严恒, 唐伯明. 沥青混合料疲劳-蠕变交互作用损伤模型[J]. 中国公路学报, 2011, 24 (4): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201104005.htm

    ZHU Hong-zhou, YAN Heng, TANG Bo-ming. Damage model of interaction between fatigue and creep for asphalt mixture[J]. China Journal of Highway and Transport, 2011, 24 (4): 15-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201104005.htm
    [27] 黄允江, 汪婧, 刘平, 等. 半刚性基层沥青路面反射裂缝处治新方法探讨[J]. 公路交通技术, 2016, 32 (4): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201604010.htm

    HUANG Yun-jiang, WANG Jing, LIU Ping, et al. Exploring new method to treat reflection crack on semi rigid base asphalt pavement[J]. Technology of Highway and Transport, 2016, 32 (4): 43-48. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201604010.htm
    [28] BAEK J, OZER H, WANG Hao, et al. Effects of interface conditions on reflective cracking development in hot-mix asphalt overlays[J]. Road Materials and Pavement Design, 2010, 11 (2): 307-334. doi: 10.1080/14680629.2010.9690278
    [29] KIM H, BUTTLAR W G. Finite element cohesive fracture modeling of airport pavements at low temperatures[J]. Cold Regions Science and Technology, 2009, 57 (2/3): 123-130.
    [30] 顾强康, 冷培义. 水泥混凝土道面上沥青加铺层反射裂缝试验研究[J]. 中国公路学报, 1999, 12 (1): 21-27. doi: 10.3321/j.issn:1001-7372.1999.01.004

    GU Qiang-kang, LENG Pei-yi. Experimental research on reflection cracking of bituminous overlay on old concrete pavement[J]. China Journal of Highway and Transport, 1999, 12 (1): 21-27. (in Chinese). doi: 10.3321/j.issn:1001-7372.1999.01.004
    [31] 周富杰, 孙立军. 复合路面沥青面层最佳厚度[J]. 同济大学学报, 2001, 29 (10): 1234-1239. doi: 10.3321/j.issn:0253-374X.2001.10.020

    ZHOU Fu-jie, SUN Li-jun. Optimal thickness of asphalt overlay on existing concrete pavement[J]. Journal of Tongji University, 2001, 29 (10): 1234-1239. (in Chinese). doi: 10.3321/j.issn:0253-374X.2001.10.020
    [32] WANG Si-qi, HUANG Xiao-ming, MA Tao, et al. Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structure using ABAQUS and FE-SAFE[J]. Journal of Southeast University: English Edition, 2015, 31 (4): 541-546.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  941
  • HTML全文浏览量:  136
  • PDF下载量:  960
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-03
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回