留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥混凝土路面固化温度区域特征及其对面板翘曲的影响

王丽娟 胡昌斌

王丽娟, 胡昌斌. 水泥混凝土路面固化温度区域特征及其对面板翘曲的影响[J]. 交通运输工程学报, 2018, 18(3): 19-33. doi: 10.19818/j.cnki.1671-1637.2018.03.003
引用本文: 王丽娟, 胡昌斌. 水泥混凝土路面固化温度区域特征及其对面板翘曲的影响[J]. 交通运输工程学报, 2018, 18(3): 19-33. doi: 10.19818/j.cnki.1671-1637.2018.03.003
WANG Li-juan, HU Chang-bin. Built-in temperature's regional characteristics of cement concrete pavement and its effect on slab curling[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 19-33. doi: 10.19818/j.cnki.1671-1637.2018.03.003
Citation: WANG Li-juan, HU Chang-bin. Built-in temperature's regional characteristics of cement concrete pavement and its effect on slab curling[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 19-33. doi: 10.19818/j.cnki.1671-1637.2018.03.003

水泥混凝土路面固化温度区域特征及其对面板翘曲的影响

doi: 10.19818/j.cnki.1671-1637.2018.03.003
基金项目: 

国家自然科学基金项目 51478122

国家自然科学基金项目 50908056

详细信息
    作者简介:

    王丽娟(1987-), 女, 福建宁德人, 福州大学实验师, 工学博士, 从事道路工程研究

    通讯作者:

    胡昌斌(1974-), 男, 湖北孝感人, 福州大学教授, 工学博士

  • 中图分类号: U416.216

Built-in temperature's regional characteristics of cement concrete pavement and its effect on slab curling

More Information
  • 摘要: 基于全国5个地区的气候参数, 采用路面早龄期温度场计算程序, 研究了不同海拔和纬度地区水泥混凝土路面固化温度的分布特征; 考虑了面板的固化温度与环境温度的叠加效应, 采用三维有限元程序, 分析了不同地区固化温度对路面板翘曲和脱空的影响特性。研究结果表明: 影响面板行为有板顶、板底固化温度差和固化平均温度; 各地水泥混凝土路面的全年固化温度差的分布基本呈宽矮峰加尖锐峰的双峰组合形态, 分别反映负、正固化温度差分布; 负的固化温度差集中在白天形成, 变异性大, 造成面板板角向上翘曲的趋势, 正的固化温度差基本在夜间形成, 数值集中, 形成面板板角向下翘曲的趋势; 对比不同区域的路面固化温度, 高原地区负固化温差最大, 拉萨高频次负固化温度差可达-17.2℃, 其次为北方地区, 哈尔滨高频次负固化温度差约为-13.2℃; 固化平均温度分布呈单峰型, 一般为负值, 纬度高的地区气温年较差大, 直接导致固化平均温度变异范围大, 处于北方的哈尔滨高频次固化平均温度约为-30.4℃, 拉萨则约为-18.4℃; 负的固化平均温度也会引起面板板角向下翘曲, 同等条件下其对面板翘曲的影响效应约为固化温度差影响效应的30%~50%;不同的固化温度特征叠合当地气候环境, 对面板服役阶段的翘曲和脱空会产生不同的效应, 叠加负固化温度差为-20℃时, 面板向上翘曲增大约1.5~2.0mm; 对于面板翘曲明显的地区, 建议可选用四边约束结构形式改善路面工程性能。

     

  • 图  1  路面板总有效温度计算

    Figure  1.  Calculation of total effective temperature of pavement

    图  2  不同地区路面板固化温度

    Figure  2.  Built-in temperatures of pavement slabs in different regions

    图  3  哈尔滨气温与路面固化温度分布

    Figure  3.  Distributions of air temperatures and pavement built-in temperatures in Harbin

    图  4  北京气温与路面固化温度分布

    Figure  4.  Distributions of air temperatures and pavement built-in temperatures in Beijing

    图  5  乌鲁木齐气温与路面固化温度分布

    Figure  5.  Distributions of air temperatures and pavement built-in temperatures in Urumqi

    图  6  拉萨气温与路面固化温度分布

    Figure  6.  Distributions of air temperatures and pavement built-in temperatures in Lhasa

    图  7  福州气温与路面固化温度分布

    Figure  7.  Distributions of air temperatures and pavement built-in temperatures in Fuzhou

    图  8  冬季服役阶段路面板温度

    Figure  8.  Temperatures of pavement slabs in winter service-term

    图  9  不同地区路面板总有效平均温度

    Figure  9.  Total effective average temperatures of pavement slabs in different regions

    图  10  不同地区路面板总有效温度差

    Figure  10.  Total effective temperature differences of pavement slabs in different regions

    图  11  路面板有限元计算模型

    Figure  11.  Finite element calculation model of pavement slab

    图  12  不同总有效温度差下路面板翘曲曲线

    Figure  12.  Curling curves of pavement slab under different total effective temperature differences

    图  13  不同总有效温度差下路面板脱空曲线

    Figure  13.  Uplifting curves of pavement slab under different total effective temperature differences

    图  14  不同总有效平均温度下路面板翘曲曲线

    Figure  14.  Curling curves of pavement slab under different total effective average temperatures

    图  15  不同总有效平均温度下路面板脱空曲线

    Figure  15.  Uplifting curves of pavement slab under different total effective average temperatures

    图  16  不同温度参数对板角翘曲的影响

    Figure  16.  Effects of different temperature parameters on curling of slab corner

    图  17  温度场与结构约束共同作用下面板翘曲曲线

    Figure  17.  Pavement slab curling curves under combined action of temperature fields and structural constraints

    图  18  不同季节荷载工况下单块板板角脱空曲线

    Figure  18.  Uplifting curves of single slab corners under different season loads

    图  19  夏季施工时面板纵缝约束边的板角脱空曲线

    Figure  19.  Uplifting curves of corners on longitudinal joint constraint side for pavement slab under summer construction case

    图  20  夏季施工面板外侧自由边的板角脱空曲线

    Figure  20.  Uplifting curves of corners on outer free edge for pavement slab under summer construction case

    图  21  秋季施工面板纵缝约束边的板角脱空

    Figure  21.  Uplifting curves of corners on longitudinal joint constraint side for pavement slab under autumn construction case

    图  22  秋季施工面板外侧自由边的板角脱空

    Figure  22.  Uplifting curves of corners on outer free edge for pavement slab under autumn construction case

    表  1  不同地区气候参数对比

    Table  1.   Comparison of climate parameters in different regions

    下载: 导出CSV

    表  2  不同地区典型城市施工气象参数

    Table  2.   Construction meteorological parameters of typical cities in different regions

    下载: 导出CSV

    表  3  水泥的组分比例

    Table  3.   Component ratios of cement

    下载: 导出CSV

    表  4  水泥混凝土的配合比

    Table  4.   Mixture proportions of cement concrete

    下载: 导出CSV

    表  5  路面结构参数

    Table  5.   Parameters of pavement structure

    下载: 导出CSV

    表  6  拉杆对面板板角脱空的影响

    Table  6.   Effect of tie bars on pavement slab corner uplifting

    下载: 导出CSV

    表  7  固化温度区域特性对冬季面板翘曲的影响

    Table  7.   Effect of built-in temperature's regional characteristics on winter pavement slab curling

    下载: 导出CSV
  • [1] BECKEMEYER C A, KHAZANOVICH L, YU H T. Determining amount of built-in curling in jointed plain concrete pavement: case study of Pennsylvania I-80[J]. Transportation Research Record, 2002 (1809): 85-92.
    [2] RAO S, ROESLER J R. Characterizing effective built-in curling from concrete pavement field measurements[J]. Journal of Transportation Engineering, 2005, 131 (4): 320-327. doi: 10.1061/(ASCE)0733-947X(2005)131:4(320)
    [3] RAO S, ROESLER J R. Nondestructive testing of concrete pavements for characterization of effective built-in curling[J]. Journal of Testing and Evaluation, 2005, 33 (5): 356-363.
    [4] YU H T, KHAZANOVICH L, DARTER M I, et al. Analysis of concrete pavement responses to temperature and wheel loads measured fromintrumented slabs[J]. Transportation Research Record, 1998 (1639): 94-101.
    [5] HILLER J E, ROESLER J R. Determination of critical concrete pavement fatigue damage locations using influence lines[J]. Journal of Transportation Engineering, 2005, 131 (8): 599-607. doi: 10.1061/(ASCE)0733-947X(2005)131:8(599)
    [6] WELLS S A, PHILLIPS B M, VANDENBOSSCHE J M. Quantifying built-in construction gradients and early-age slab deformation caused by environmental loads in a jointed plain concrete pavement[J]. International Journal of Pavement Engineering, 2006, 7 (4): 275-289. doi: 10.1080/10298430600798929
    [7] 胡昌斌, 孙增华. 路面板固化翘曲对车辆动荷载和行驶舒适性的影响[J]. 振动与冲击, 2014, 23 (33): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201423002.htm

    HU Chang-bin, SUN Zeng-hua. Effects of a slab's built-in curling on dynamic load and riding comfort of vehicles[J]. Journal of Vibration and Shock, 2014, 23 (33): 1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201423002.htm
    [8] KIM S, CEYLAN H, GOPALAKRISHNAN K. Smoothness variation in early-age jointed plain concrete pavements[J]. Canadian Journal of Civil Engineering, 2008, 35 (12): 1388-1398. doi: 10.1139/L08-086
    [9] KIM S, CEYLAN H, GOPALAKRISHNAN K. Initial smoothness of concrete pavements under environmental loads[J]. Magazine of Concrete Research, 2007, 59 (8): 599-609. doi: 10.1680/macr.2007.59.8.599
    [10] SCHELL T H. Field observations of the early-age behavior of jointed plain concrete pavements[D]. Morgantown: West Virginia University, 2001.
    [11] CEYLAN H, KIM S, GOPALAKRISHNAN K, et al. Environmental effects on deformation and smoothness behavior of early-age jointed plain concrete pavements[J]. Transportation Research Board, 2007 (2037): 30-39.
    [12] HILLER J E. Development of mechanistic-empirical principles for jointed plain concrete pavement fatigue design[D]. Urbana: University of Illinois at Urbana-Champaign, 2007.
    [13] HANSEN W, SMILEY D L, PENG Yan-fei, et al. Validating top-down premature transverse slab cracking in jointed plain concrete pavement[J]. Transportation Research Record, 2002 (1809): 52-59.
    [14] HANSEN W, WEI Y, SMILEY D L, et al. Effects of paving conditions on built-in curling and pavement performance[J]. International Journal of Pavement Engineering, 2006, 7 (4): 291-296. doi: 10.1080/10298430600798952
    [15] 冯德成, 权磊, 田波, 等. 水泥混凝土路面固化翘曲试验研究[J]. 建筑材料学报, 2013, 16 (5): 812-816. doi: 10.3969/j.issn.1007-9629.2013.05.013

    FENG De-cheng, QUAN Lei, TIAN Bo, et al. Experimental study on warp of concrete road slab upon curing[J]. Journal of Building Materials, 2013, 16 (5): 812-816. (in Chinese). doi: 10.3969/j.issn.1007-9629.2013.05.013
    [16] 杜沐露. 水泥混凝土路面板早龄期温度应力及开裂研究[D]. 福州: 福州大学, 2012.

    DU Mu-lu. Study on thermal stress and cracking of cement concrete pavement in early age[D]. Fuzhou: Fuzhou University, 2012. (in Chinese).
    [17] 孙华斌. 水泥混凝土路面板早龄期固化翘曲反演方法研究[D]. 福州: 福州大学, 2012.

    SUN Hua-bin. Research on the inversion method about earlyage built-in curling of cement concrete pavement slab[D]. Fuzhou: Fuzhou University, 2012. (in Chinese).
    [18] WELLS S A, PHILLIPS B M, VANDENBOSSCHE J M. Quantifying built-in construction gradients and early-age slab deformation caused by environmental loads in a jointed plain concrete pavement[J]. International Journal of Pavement Engineering, 2006, 7 (4): 275-289. doi: 10.1080/10298430600798929
    [19] 胡昌斌, 孙增华, 王丽娟. 水泥混凝土路面早龄期温度场性状与控制方法[J]. 交通运输工程学报, 2013, 13 (5): 1-9. doi: 10.3969/j.issn.1671-1637.2013.05.001

    HU Chang-bin, SUN Zeng-hua, WANG Li-juan. Characteristic and control method of early-age temperature field for cement concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (5): 1-9. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.05.001
    [20] JEONG J H, ZOLLINGER D G. Early-age curling and warping behavior: insights from a fully instrumented testslab system[J]. Transportation Research Record, 2004 (1896): 66-74.
    [21] VANDENBOSSCHE J M, MU F, GUTIERREZ J J, et al. An evaluation of the built-in temperature difference input parameter in the jointed plain concrete pavement cracking model of the mechanistic-empirical pavement design guide[J]. International Journal of Pavement Engineering, 2010, 12 (3): 215-228.
    [22] ASBAHAN R E, VANDENBOSSCHE J M. Effects of temperature and moisture gradients on slab deformation for jointed plain concrete pavements[J]. Journal of Transportation Engineering, 2011, 137 (8): 563-570. doi: 10.1061/(ASCE)TE.1943-5436.0000237
    [23] KIM S. Early age behavior of jointed plain concrete pavements subjected to environmental loads[D]. Ames: Iowa State University, 2006.
    [24] NASSIRI S. Establishing permanent curl/warp temperature gradient in jointed plain concrete pavements[D]. Pittsburgh: University of Pittsburgh, 2011.
    [25] 胡昌斌, 金王杰, 孙增华. 水泥混凝土路面早龄期温度场数值模拟研究[J]. 工程力学, 2013, 4 (30): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304025.htm

    HU Chang-bin, JIN Wang-jie, SUN Zeng-hua. Numerical simulation of early-age temperature of cement concrete pavement[J]. Engineering Mechanics, 2013, 30 (4): 175-183. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304025.htm
    [26] 房志群, 王维福. 高海拔地区混凝土路面的常见裂缝与防治措施[J]. 公路交通技术, 2006 (6): 34-36. doi: 10.3969/j.issn.1009-6477.2006.06.010

    FANG Zhi-qun, WANG Wei-fu. Common cracks on concrete pavement in high elevation areas and counter measures[J]. Technology of Highway and Transport, 2006 (6): 34-36. (in Chinese). doi: 10.3969/j.issn.1009-6477.2006.06.010
    [27] JEONG J H, ZOLLINGER D G. Environmental effects on the behavior of jointed plain concrete pavements[J]. Journal of Transportation Engineering, 2005, 131 (2): 140-148. doi: 10.1061/(ASCE)0733-947X(2005)131:2(140)
    [28] YE Dan. Early-age concrete temperature and moisture relative to curing effectiveness and projected effects on selected aspects of slab behavior[D]. College Station: Texas A & amp; amp; M University, 2007.
    [29] LEDERLE R E. Accounting for warping and differential drying shrinkage mechanisms in the design of jointed plain concrete pavement[D]. Houghton: Michigan Technological University, 2011.
    [30] YEON J H, CHOI S, HA S, et al. Effects of creep and built-in curling on stress development of Portland cement concrete pavement under environmental loadings[J]. Journal of Transportation Engineering, 2013, 139 (2): 147-155. doi: 10.1061/(ASCE)TE.1943-5436.0000451
  • 加载中
图(22) / 表(7)
计量
  • 文章访问数:  744
  • HTML全文浏览量:  174
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回