留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道不平顺概率模型

徐磊 翟婉明

徐磊, 翟婉明. 轨道不平顺概率模型[J]. 交通运输工程学报, 2018, 18(3): 56-63. doi: 10.19818/j.cnki.1671-1637.2018.03.006
引用本文: 徐磊, 翟婉明. 轨道不平顺概率模型[J]. 交通运输工程学报, 2018, 18(3): 56-63. doi: 10.19818/j.cnki.1671-1637.2018.03.006
XU Lei, ZHAI Wan-ming. Track irregularity probabilistic model[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 56-63. doi: 10.19818/j.cnki.1671-1637.2018.03.006
Citation: XU Lei, ZHAI Wan-ming. Track irregularity probabilistic model[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 56-63. doi: 10.19818/j.cnki.1671-1637.2018.03.006

轨道不平顺概率模型

doi: 10.19818/j.cnki.1671-1637.2018.03.006
基金项目: 

国家自然科学基金项目 51678507

西南交通大学轨道交通工程动力学创新引智基地项目 B16041

详细信息
    作者简介:

    徐磊(1988-), 男, 湖南华容人, 西南交通大学工学博士研究生, 从事车辆-轨道时空非线性振动研究

    翟婉明(1963-), 男, 江苏靖江人, 西南交通大学教授, 工学博士, 中国科学院院士

  • 中图分类号: U213.213

Track irregularity probabilistic model

More Information
    Author Bio:

    XU Lei(1988-), male, doctoral student, leix_2013@163.com

    ZHAI Wan-ming(1963-), male, professor, academician of Chinese Academy of Sciences, PhD, wmzhai@swjtu.edu.cn

  • 摘要: 为了高效选取轨道不平顺随机样本, 以满足车辆-轨道系统随机动力与可靠度分析中的激振源遍历性要求, 依据轨道随机不平顺的弱平稳与谱相似特征, 提出了一种轨道不平顺概率模型; 采用离散概率积分和统计方法, 在时域中将大量轨道不平顺检测信号分成若干个时程序列, 对每个序列采用谱分析法计算其统计功率谱密度分布; 采用矩阵法对轨道不平顺功率谱密度函数进行集合表征, 视每条谱线在不同频率点的功率谱密度概率具有累加性, 采用单一频率下的功率谱密度概率分布推知整条谱线的出现概率; 采用通用随机模拟方法选取代表性轨道谱, 并反演随机不平顺序列; 实测了某高速铁路约269km的轨道高低和方向不平顺, 基于车辆-轨道耦合动力学理论, 从轨道不平顺模拟幅值与车辆-轨道系统动力响应的概率密度分布出发, 对比了轨道不平顺概率模型与轨道不平顺随机模型的计算结果, 以验证轨道不平顺概率模型的正确性和高效性。计算结果表明: 以2种模型生成的轨道随机不平顺为激振源, 获得的车辆-轨道系统动力响应分布熵差异小于2%, 2种模型均能准确表达不平顺激扰特性; 为保证模拟与实测不平顺的概率密度分布一致, 采用随机模型和概率模型分别需要生成131和33个随机样本, 概率模型具有更高的分析效率; 在给定计算工况下, 轮轨力和车体加速度的幅值分别为38~152kN和-0.042g~0.043g (g为重力加速度), 均未超过《高速铁路设计规范》 (TB 10621—2014) 中的限值(轮轨力为170kN, 车体加速度为0.25g), 表明此高速铁路轨道不平顺状态较优, 行车安全性和舒适性可以得到保证。

     

  • 图  1  轨道不平顺

    Figure  1.  Track irregularities

    图  2  不同样本的特征值

    Figure  2.  Eigenvalues of different samples

    图  3  轨道不平顺的代表样本(TISM)

    Figure  3.  Representative samples of track irregularities (TISM)

    图  4  轨道不平顺的代表样本(TIPM)

    Figure  4.  Representative samples of track irregularities (TIPM)

    图  5  轨道不平顺幅值概率密度分布

    Figure  5.  Probability density distributions of track irregularity amplitudes

    图  6  车辆系统动力指标对比

    Figure  6.  Comparison of dynamic indices of vehicle system

    图  7  轨道系统动力指标对比

    Figure  7.  Comparison of dynamic indices of track system

    表  1  钢轨动力指标的概率熵对比

    Table  1.   Comparisons on probability entropy for dynamic indices of track

    下载: 导出CSV
  • [1] MAO Jian-feng, YU Zhi-wu, XIAO Yuan-jie, et al. Random dynamic analysis of a train-bridge coupled system involving random system parameters based on probability density evolution method[J]. Probabilistic Engineering Mechanics, 2016, 46: 48-61. doi: 10.1016/j.probengmech.2016.08.003
    [2] ZHU D Y, ZHANG Y H, KENNEDY D, et al. Stochastic vibration of the vehicle-bridge system subject to non-uniform ground motions[J]. Vehicle System Dynamics, 2014, 52 (3): 410-428. doi: 10.1080/00423114.2014.886707
    [3] XU Lei, ZHAI Wan-ming. A new model for temporal-spatial stochastic analysis of vehicle-track systems[J]. Vehicle System Dynamics, 2017, 55 (3): 427-448. doi: 10.1080/00423114.2016.1270456
    [4] 徐磊, 翟婉明. 轨道结构随机场模型与车辆-轨道耦合随机动力分析[J]. 应用数学与力学, 2017, 8 (1): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201701006.htm

    XU Lei, ZHAI Wan-ming. The random field model for track structures and vehicle-track coupled stochastic dynamic analysis[J]. Applied Mathematics and Mechanics, 2017, 38 (1): 67-74. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201701006.htm
    [5] 张有为, 项盼, 赵岩, 等. 基于对称性的三维车辆轨道耦合系统随机振动虚拟激励方法[J]. 计算力学学报, 2013, 30 (3): 349-355. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201303007.htm

    ZHANG You-wei, XIANG Pan, ZHAO Yan, et al. Efficient random vibration analysis of 3D-coupled vehicle-track systems based on symmetry principle[J]. Chinese Journal of Computational Mechanics, 2013, 30 (3): 349-355. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201303007.htm
    [6] ZENG Zhi-ping, ZHAO Yan-gang, XU Wen-tao, et al. Random vibration analysis of train-bridge under track irregularities and traveling seismic waves using train-slab track-bridge interaction model[J]. Journal of Sound and Vibration, 2015, 342: 22-43. doi: 10.1016/j.jsv.2015.01.004
    [7] PERRIN G, SOIZE C, DUHAMEL D, et al. Track irregularities stochastic modelling[J]. Probabilistic Engineering Mechanics, 2013, 34: 123-130. doi: 10.1016/j.probengmech.2013.08.006
    [8] PANUNZIO A M, PUEL G, COTTEREAU R, et al. Construction of a stochastic model of track geometry irregularities and validation through experimental measurements of dynamic loading[J]. Vehicle System Dynamics, 2017, 55 (3): 399-426. doi: 10.1080/00423114.2016.1269935
    [9] LESTOILLE N, SOIZE C, FUNFSCHILLING C. Stochastic prediction of high-speed train dynamics to long-term evolution of track irregularities[J]. Mechanics Research Communications, 2016, 75: 29-39. doi: 10.1016/j.mechrescom.2016.05.007
    [10] XU Lei, ZHAI Wan-ming. A novel model for determining the amplitude-wavelength limits of track irregularities accompanied by a reliability assessment in railway vehicle-track dynamics[J]. Mechanical Systems and Signal Processing, 2017, 86: 260-277. doi: 10.1016/j.ymssp.2016.10.010
    [11] XU Lei, ZHAI Wan-ming, GAO Jian-min. Extended applications of track irregularity probabilistic model and vehicle-slab track coupled model on dynamics of railway systems[J]. Vehicle System Dynamics, 2017, 55 (11): 1686-1706. doi: 10.1080/00423114.2017.1319961
    [12] XU Lei, ZHAI Wan-ming, GAO Jian-min. Global sensitivity analysis for vehicle-track interactions: special attention on track irregularities[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13 (3): 1-12.
    [13] XU Lei, ZHAI Wan-ming. Stochastic analysis model for vehicle-track coupled systems subject to earthquakes and track random irregularities[J]. Journal of Sound and Vibration, 2017, 407: 209-225. doi: 10.1016/j.jsv.2017.06.030
    [14] XU Lei, ZHAI Wan-ming. Probabilistic assessment of railway vehicle-curved track systems considering track random irregularities[J]. Vehicle System Dynamics, 2018, 56 (1): 1-25. doi: 10.1080/00423114.2017.1340652
    [15] XU Lei, ZHAI Wan-ming, CHEN Zhao-wei. On use of characteristic wavelengths of track irregularities to predict track portions with deteriorated wheel/rail forces[J]. Mechanical Systems and Signal Processing, 2018, 104: 264-278. doi: 10.1016/j.ymssp.2017.10.038
    [16] XU Lei, GAO Jian-min, ZHAI Wan-ming. On effects of rail fastener failure on vehicle/track interactions[J]. Structural Engineering and Mechanics, 2017, 63 (5): 659-667.
    [17] BABUŠKA I, NOBILE F, TEMPONE R. A stochastic collocation method for elliptic partial differential equations with random input data[J]. SIAM Journal on Numerical Analysis, 2007, 45 (3): 1005-1034. doi: 10.1137/050645142
    [18] 康熊, 刘秀波, 李红艳, 等. 高速铁路无砟轨道不平顺谱[J]. 中国科学: 技术科学, 2014, 44 (7): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407006.htm

    KANG Xiong, LIU Xiu-bo, LI Hong-yan, et al. PSD of ballastless track irregularities of high-speed railway[J]. Scientia Sinica: Technologica, 2014, 44 (7): 687-696. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407006.htm
    [19] 陈果, 翟婉明. 铁路轨道不平顺随机过程的数值模拟[J]. 西南交通大学学报, 1999, 34 (2): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm

    CHEN Guo, ZHAI Wan-ming. Numerical simulation of the stochastic process of railway track irregularities[J]. Journal of Southwest Jiaotong University, 1999, 34 (2): 138-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm
    [20] ZHAI Wan-ming, WANG Kai-yun, CAI Cheng-biao. Fundamentals of vehicle-track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47 (11): 1349-1376. doi: 10.1080/00423110802621561
    [21] CHEN Guo, ZHAI Wan-ming. A new wheel/rail spatially dynamic coupling model and its verification[J]. Vehicle System Dynamics, 2004, 41 (4): 301-322. doi: 10.1080/00423110412331315178
    [22] SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12 (1-3): 79-83. doi: 10.1080/00423118308968725
    [23] CHEN Xian-mai, DENG Xiang-yun, XU Lei. A three-dimensional dynamic model for railway vehicle-track interactions[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13: 1-10.
    [24] XU Lei, CHEN Xian-mai, LI Xu-wei, et al. Development of a railway wagon-track interaction model: case studies on excited tracks[J]. Mechanical Systems and Signal Processing, 2018, 100: 877-898. doi: 10.1016/j.ymssp.2017.08.008
    [25] DOBOVIŠEK A, MARKOVIČ R, BRUMEN M, et al. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics[J]. Physica A: Statistical Mechanics and its Applications, 2018, 496: 220-232. doi: 10.1016/j.physa.2017.12.111
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  947
  • HTML全文浏览量:  292
  • PDF下载量:  730
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-03
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回