留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施工隧道负离子除尘新方法

徐世强 任洪远 王明山 李杰

徐世强, 任洪远, 王明山, 李杰. 施工隧道负离子除尘新方法[J]. 交通运输工程学报, 2018, 18(3): 84-93. doi: 10.19818/j.cnki.1671-1637.2018.03.009
引用本文: 徐世强, 任洪远, 王明山, 李杰. 施工隧道负离子除尘新方法[J]. 交通运输工程学报, 2018, 18(3): 84-93. doi: 10.19818/j.cnki.1671-1637.2018.03.009
XU Shi-qiang, REN Hong-yuan, WANG Ming-shan, LI Jie. New method of dust removal by negative ions in construction tunnel[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 84-93. doi: 10.19818/j.cnki.1671-1637.2018.03.009
Citation: XU Shi-qiang, REN Hong-yuan, WANG Ming-shan, LI Jie. New method of dust removal by negative ions in construction tunnel[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 84-93. doi: 10.19818/j.cnki.1671-1637.2018.03.009

施工隧道负离子除尘新方法

doi: 10.19818/j.cnki.1671-1637.2018.03.009
基金项目: 

国家自然科学基金项目 41672305

陕西交通厅科技项目 20160023K

详细信息
    作者简介:

    徐世强(1972-), 男, 陕西澄城人, 长安大学副教授, 工学博士, 从事路基与隧道工程研究

  • 中图分类号: U453.83

New method of dust removal by negative ions in construction tunnel

More Information
    Author Bio:

    XU Shi-qiang(1972-), male, associate professor, PhD, 164398791@qq.com

  • 摘要: 在施工隧道通风换气时, 为了快速稀释粉尘, 加快施工进度, 引入负离子除尘新方法, 并分析了其应用的可行性; 利用粉尘颗粒荷电理论研究了粉尘颗粒的荷电量, 推导了粉尘颗粒在负离子净化系统外电场作用下的饱和荷电量计算公式; 根据施工隧道的环境特点, 在粉尘沉降主动力为电场力和重力时分析了粉尘颗粒的受力情况, 并利用牛顿第二定律推导了粉尘颗粒的沉降算法; 模拟隧道环境进行了室内试验, 依照室内试验获取的安装参数确定隧道试验方案后进行了现场试验, 并利用现场测试结果分析了负离子除尘新方法的使用效果、机理和沉降算法的准确性。研究结果表明: 在使用和未使用负离子净化系统的1个施工周期内, 试验段呼尘消除率分别为51%和20%, 超过《公路隧道施工技术规范》 (JTG F60—2009) (简称《规范》) 中呼尘短时间接触容许浓度8mg·m-3的时间分别为1、12h, 使用负离子净化系统后, 呼尘时间加权平均浓度从6.38mg·m-3降至3.10mg·m-3, 满足《规范》中不大于4mg·m-3的要求, 即采用新方法可快速、高效地净化施工隧道内的空气; 施工隧道采用负离子除尘新方法的机理可使用粉尘荷电理论和牛顿第二定律进行解释; 在粉尘主要为PM10的相似工况下, 利用沉降算法、室内试验和现场试验得出的粉尘消除时间分别为14、18、20min, 采用算法得出的粉尘沉降时间需要考虑的综合影响系数为1.31.4。

     

  • 图  1  未荷电时球形粉尘颗粒

    Figure  1.  Spherical dust particle when uncharging

    图  2  粉尘颗粒荷电产生的电场

    Figure  2.  Electric field produced by charging dust particle

    图  3  粉尘颗粒竖向受力

    Figure  3.  Vertical forces on dust particle

    图  4  施工隧道现场

    Figure  4.  Construction tunnel site

    图  5  风速测量

    Figure  5.  Measurement of wind speed

    图  6  室内试验现场布置

    Figure  6.  Layout of indoor test site

    图  7  室内测试

    Figure  7.  Indoor test

    图  8  负离子浓度与电压的关系

    Figure  8.  Relationship between negative ion concentration and voltage

    图  9  粉尘浓度与负离子浓度变化曲线

    Figure  9.  Variation curves of dust concentration and negative ion concentration

    图  10  负离子装置安装现场

    Figure  10.  Installation site of negative ion device

    图  11  现场试验布置

    Figure  11.  Feild test layout

    图  12  粉尘检测仪

    Figure  12.  Dust detector

    图  13  装置开启前后隧道环境对比

    Figure  13.  Comparison of tunnel environment before and after device opening

    图  14  装置开启前后两测点粉尘浓度对比

    Figure  14.  Comparison of dust concentrations of two test points before and after device opening

    图  15  一个施工周期装置开启前后测点2粉尘浓度对比

    Figure  15.  Comparison of dust concentrations of test point 2before and after device opening during a construction period

    图  16  装置开启后两测点粉尘浓度对比

    Figure  16.  Comparison of dust concentrations of two test points after device opening

    图  17  1h内装置开启前后测点2粉尘浓度对比

    Figure  17.  Comparison of dust concentrations of test point 2before and after device opening in 1h

    表  1  相关参数取值

    Table  1.   Values of relevant parameters

    下载: 导出CSV
  • [1] 胡根友. 长大隧道施工通风技术应用研究[D]. 成都: 西南交通大学, 2008.

    HU Gen-you. Study on ventilationtechnical application of long tunnel construction[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese).
    [2] 吴兆波, 郭强, 王金良, 等. 置换通风下不同风速对负离子净化PM2.5的研究[J]. 工业安全与环保, 2016, 42 (6): 37-41. doi: 10.3969/j.issn.1001-425X.2016.06.010

    WU Zhao-bo, GUO Qiang, WANG Jin-liang, et al. Research on the effect of different air supply velocities on the negative ions purification for PM2.5 under displacement ventilation[J]. Industrial Safety and Environmental Protection, 2016, 42 (6): 37-41. (in Chinese). doi: 10.3969/j.issn.1001-425X.2016.06.010
    [3] 曹正卯. 长大隧道与复杂地下工程施工通风特性及关键技术研究[D]. 成都: 西南交通大学, 2016.

    CAO Zheng-mao. Study on ventilation characteristics and key techniques of long tunnels and complicated underground engineering in the construction stage[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese).
    [4] 沈晋明, 饶松涛, 王玲玲. 负离子技术对地铁站环境改善效果的研究[J]. 暖通空调, 2009, 39 (2): 122-125. doi: 10.3969/j.issn.1002-8501.2009.02.029

    SHEN Jin-ming, RAO Song-tao, WANG Ling-ling. Study on improving effects of negative ion technique on environment in an underground railway station[J]. Heating Ventilating and Air Conditioning, 2009, 39 (2): 122-125. (in Chinese). doi: 10.3969/j.issn.1002-8501.2009.02.029
    [5] 成霞, 钟柯. 不同送风方式对室内负离子分布影响的数值模拟[J]. 建筑热能空调工程, 2011, 30 (1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JZRK201101012.htm

    CHENG Xia, ZHONG Ke. Numerical simulation of different types of ventilation's influence on indoor negative ion spreading in air[J]. Building Energy and Environment, 2011, 30 (1): 50-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZRK201101012.htm
    [6] MAYYA Y S, SAPRA B K, KHAN A, et al. Aerosol removal by unipolar ionization in indoor environments[J]. Journal of Aerosol Science, 2004, 35 (8): 923-941. doi: 10.1016/j.jaerosci.2004.03.001
    [7] FLETCHER L A, NOAKES C J, SLEIGH P A, et al. Air ion behavior in ventilated rooms[J]. Indoor and Built Environment, 2008, 17 (2): 173-182. doi: 10.1177/1420326X08089622
    [8] 向晓东, 陈宝智, 张国权. 荷电粉尘在交变电场中的凝并与收集[J]. 东北大学学报: 自然科学版, 1999, 20 (6): 615-618. doi: 10.3321/j.issn:1005-3026.1999.06.015

    XIANG Xiao-dong, CHEN Bao-zhi, ZHANG Guo-quan. Coagulation of bipolar charged particles in A-C electric field[J]. Journal of Northeastern University: Natural Science, 1999, 20 (6): 615-618. (in Chinese). doi: 10.3321/j.issn:1005-3026.1999.06.015
    [9] 贺美陆. 湍流场中可吸入颗粒物双极荷电凝聚机理的实验研究[D]. 北京: 清华大学, 2004.

    HE Mei-lu. Experimental study on the mechanism of bipolar charging agglomeration of fine particles in turbulent flow[D]. Beijing: Tsinghua University, 2004. (in Chinese).
    [10] 张向荣, 王连泽, 朱克勤. 外电场对荷电颗粒静电凝聚的影响[J]. 清华大学学报: 自然科学版, 2005, 45 (8): 1107-1109. doi: 10.3321/j.issn:1000-0054.2005.08.027

    ZHANG Xiang-rong, WANG Lian-ze, ZHU Ke-qin. Influence of external electric field on the coagulation of electrically charged particles[J]. Journal of Tsinghua University: Science and Technology, 2005, 45 (8): 1107-1109. (in Chinese). doi: 10.3321/j.issn:1000-0054.2005.08.027
    [11] 赵爽. 电凝并脱除可吸入颗粒物的实验研究[D]. 杭州: 浙江大学, 2006.

    ZHAO Shuang. Experiment study on removal of PM10 by electric agglomeration[D]. Hangzhou: Zhejiang University, 2006. (in Chinese).
    [12] 毛程奇. 交变电场粒子荷电凝并实验研究[D]. 大连: 大连海事大学, 2007.

    MAO Cheng-qi. Experiment study in particles charge and agglomeration at AC electric field[D]. Dalian: Dalian Maritime University, 2007. (in Chinese).
    [13] 陈旺生, 向晓东, 陆继东. 偶极荷电静电凝并除尘器收尘机理及性能研究[J]. 环境工程学报, 2008, 2 (7): 973-976. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200807023.htm

    CHEN Wang-sheng, XIANG Xiao-dong, LU Ji-dong. Study on collecting principle and performance of dipolar charging electrostatic agglomerator[J]. Chinese Journal of Environmental Engineering, 2008, 2 (7): 973-976. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200807023.htm
    [14] 白敏菂, 王少雷, 陈志刚, 等. 烟道荷电凝并电场对电捕集微细粉尘效率的影响[J]. 中国环境科学, 2010, 30 (6): 738-741. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201006007.htm

    BAI Min-di, WANG Shao-lei, CHEN Zhi-gang, et al. Effect of submicron dust charging and coagulation in the flue on the efficiency of ESP[J]. China Environmental Science, 2010, 30 (6): 738-741. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201006007.htm
    [15] 朱继保. 细颗粒物的电收集技术研究[D]. 杭州: 浙江大学, 2010.

    ZHU Ji-bao. Fine particle collection with electrostatic precipitation[D]. Hangzhou: Zhejiang University, 2010. (in Chinese).
    [16] WATANABE T, TOCHIKUBO F, KOIZUMI Y, et al. Submicron particle agglomeration by an electrostatic agglomerator[J]. Journal of Electrostatics, 1995, 43 (4): 367-383.
    [17] JI J H, HWANG J, BAE G N, et al. Particle charging and agglomeration in DC and AC electric fields[J]. Journal of Electrostatics, 2004, 61 (1): 57-68. doi: 10.1016/j.elstat.2003.12.003
    [18] 邓鹤鸣, 何正浩, 许宇航, 等. 雾霾对冲击放电路径影响特性的分析[J]. 高电压技术, 2009, 35 (11): 2669-2673. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200911014.htm

    DENG He-ming, HE Zheng-hao, XU Yu-hang, et al. Effects of the size of macroparticles on two-phase mixture discharges[J]. High Voltage Engineering, 2009, 35 (11): 2669-2673. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200911014.htm
    [19] 谭震宇, 杨金洪, 徐明铭, 等. 雾霾对高压直流输电线路电晕离子流场的影响[J]. 高电压技术, 2016, 42 (12): 3844-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201612021.htm

    TAN Zhen-yu, YANG Jin-hong, XU Ming-ming, et al. Influence of fog-haze on corona ion flow field of HVDC transmission lines[J]. High Voltage Engineering, 2016, 42 (12): 3844-3852. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201612021.htm
    [20] SUNAGA Y, SAWADA Y. Method of calculating ionized field of HVDC transmission lines and analysis of space charge effects on RI[J]. IEEE Transactions on Power Apparatus and Systems, 1980, 99 (2): 605-615.
    [21] SUNAGA Y, AMANO Y, SUGIMOTO T. Electric field and ion current at the ground and voltage of charged objects under HVDC lines[J]. Power Engineering Review, 1981, 1 (4): 75.
    [22] 崔翔, 周象贤, 卢铁兵. 高压直流输电线路离子流场计算方法研究进展[J]. 中国电机工程学报, 2012, 32 (36): 130-141. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201236019.htm

    CUI Xiang, ZHOU Xiang-xian, LU Tie-bing. Recent progress in the calculation methods of ion flow field of HVDC transmission lines[J]. Proceedings of the CSEE, 2012, 32 (36): 130-141. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201236019.htm
    [23] JANISCHEWSKYJ W, CELA G. Finite element solution for electric fields of coronating DC transmission lines[J]. IEEE Transactions on Power Apparatus and Systems, 1979, 98 (3): 1000-1012.
    [24] DENISOV S I, PEDCHENKO B O. Drift of suspended ferromagnetic particles due to the Magnus effect[J]. Journal of Applied Physics, 2017, 121 (4): 1-10.
    [25] SEIFERT J. A review of the Magnus effect in aeronautics[J]. Progress in Aerospace Sciences, 2012, 555: 17-45.
    [26] STUREK W B, KAYSER L D, NIETUBICZ C J, et al. Computations of magnus effects for a yawed, spinning body of revolution[J]. AIAA Journal, 2012, 16 (7): 687-692.
    [27] 黎霞, 高燕希, 宁黎磊, 等. 隧道衬砌介电常数试验与理论分析[J]. 中国公路学报, 2008, 21 (5): 70-74. doi: 10.3321/j.issn:1001-7372.2008.05.013

    LI Xia, GAO Yan-xi, NING Li-lei, et al. Experimental and theoretical analysis on permittivity of tunnel lining[J]. China Journal of Highway and Transport, 2008, 21 (5): 70-74. (in Chinese). doi: 10.3321/j.issn:1001-7372.2008.05.013
    [28] 武义凯. 公路隧道壁面通风摩阻损失系数研究[D]. 西安: 长安大学, 2015.

    WU Yi-kai. Research on the ventilation wall friction loss of highway tunnel[D]. Xi'an: Chang'an University, 2015. (in Chinese).
    [29] 王勇勤, 段丽华, 徐国胜, 等. 基于Monte-Carlo方法的静电除尘器除尘效率[J]. 环境工程学报, 2012, 6 (8): 2775-2781. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201208058.htm

    WANG Yong-qin, DUAN Li-hua, XU Guo-sheng, et al. Efficiency of electrostatic precipitator based on Monte-Carlo method[J]. Chinese Journal of Environmental Engineering, 2012, 6 (8): 2775-2781. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201208058.htm
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  165
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-22
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回