Impact dynamic characteristic of heavy wagon and its effect on lateral load of bolster
-
摘要: 基于摩擦缓冲器动力学理论、车钩双向接触方法与车体摇枕载荷传递模型, 构建了车辆冲击三维动力学模型, 仿真了不同冲击速度与不同空重车状态的货车冲击, 分析了车辆冲击动态特性及其对摇枕横向载荷的影响, 并通过试验对仿真结果进行了验证。分析结果表明: 利用车辆冲击三维动力学模型顺利实现了车辆冲击时缓冲器动态特性、车钩连挂动态特性与摇枕横向载荷的仿真计算, 并获得了与冲击试验较为吻合的结果, 其中车钩力误差基本小于10%, 摇枕横向载荷误差基本小于25%;空车质量较小, 在冲击作用下车钩和从板姿态变化大, 因此, 重车冲击空车时车钩力动态曲线振荡特性较重车冲击重车更为明显, 甚至局部出现尖峰; 相对于车钩接触模型与力学传递特性, 摩擦缓冲器模型存在黏滞特性, 导致重车冲击重车和重车冲击空车下车钩接触力较缓冲器阻抗力分别小24%和31%;车钩力和摇枕横向载荷随着冲击速度的提高而逐渐增大, 且时间变化历程与最大峰值出现的时间基本一致, 相同速度下重车冲击重车的车钩力要大于重车冲击空车的车钩力, 在3、5、8km·h-1速度下分别大57%、25%和37%, 而产生的摇枕横向载荷刚好相反, 3种速度下分别小42%、53%和47%, 因此, 重车与空车调车连挂过程更容易造成转向架摇枕横向载荷过大, 应严格控制其连挂速度。Abstract: A 3D dynamics model of wagon impact was built based on draft gear dynamics theory, coupler bidirectional contact method and load transfer model of wagon and bolster, the impacts under different velocities and empty/heavy wagon states were simulated, the wagon impact dynamic characteristic and its effect on the lateral load of bolster were analyzed, and the simulation result was validated by impact test. Analysis result shows that the dynamic characteristic of draft gear-coupler bidirectional contact, and the lateral load of bolster in wagon impact can be simulated by using the 3D dynamics model, and are close to the test result. Themaximum errors of coupler force and bolster lateral load are less than 10% and 25%, respectively. Because the mass of empty wagon is smaller and the motions of coupler and plate change greater in wagon impact, the dynamic curve oscillation of coupler force in loaded and unloaded wagons impact is more obvious than that in loaded wagons impact, and even local peak appears. Relatively to the coupler contact model and mechanical transmission characteristics, because the model of draft gear has hysteresis characteristic, the coupler contact force in loaded wagons impact is 24% smaller than the resistance force of friction draft gear, and the value in loaded and unloaded wagons impact is 31%. The coupler force and bolster lateral load increase with the impact velocity, and the changing processes and appearing times of the maximum values are nearly consistent. The coupler force is larger between loaded wagons than between loaded and unloaded wagons under the same velocity. When the velocity is 3, 5 and 8 km·h-1, respectively, the value increases by 57%, 25% and 37%, respectively. But the bolster lateral load is opposite to the coupler force, the value decreases by 42%, 53% and 47% under the three velocities, respectively. Therefore, the connected scheduling between loaded and unloaded wagons should be strictly controlled because their impact can result in larger lateral load of bolster.
-
Key words:
- heavy wagon /
- coupler /
- friction draft gear /
- impact dynamics /
- coupler force /
- bolster lateral load
-
表 1 货车冲击工况
Table 1. Impacting conditions of freight wagons
-
[1] 胡杨, 魏伟, 张渊. 机车编组方式对列车再充气特性的影响[J]. 交通运输工程学报, 2017, 17 (3): 111-120. doi: 10.3969/j.issn.1671-1637.2017.03.012HU Yang, WEI Wei, ZHANG Yuan. Influence of locomotive marshalling mode on air-recharging characteristic of train[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 111-120. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.03.012 [2] 赵旭宝, 魏伟, 张军, 等. 缓冲器分段阻抗特性对重载列车纵向冲动的影响[J]. 铁道学报, 2017, 39 (10): 33-42. doi: 10.3969/j.issn.1001-8360.2017.10.005ZHAO Xu-bao, WEI Wei, ZHANG Jun, et al. Influence of segment impedance characteristics of draft gear on longitudinal impulse of heavy haul train[J]. Journal of the China Railway Society, 2017, 39 (10): 33-42. (in Chinese). doi: 10.3969/j.issn.1001-8360.2017.10.005 [3] 杨阳, 丁军君, 李芾, 等. 机车牵引工况下车轮磨耗研究[J]. 交通运输工程学报, 2017, 17 (5): 81-89. doi: 10.3969/j.issn.1671-1637.2017.05.008YANG Yang, DING Jun-jun, LI Fu, et al. Research on wheel wear under locomotive traction condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (5): 81-89. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.05.008 [4] 汤劲松, 周莉. 铁道货车摇枕横向载荷考核标准对比研究[J]. 铁道车辆, 2014, 52 (9): 1-5. doi: 10.3969/j.issn.1002-7602.2014.09.001TANG Jin-song, ZHOU Li. Comparison and research on the examination standards for lateral load on bolsters of railway freight cars[J]. Rolling Stock, 2014, 52 (9): 1-5. (in Chinese). doi: 10.3969/j.issn.1002-7602.2014.09.001 [5] ORRINGER O, TONG P. Results and analysis of the switchyard impact tests[R]. Washington DC: Federal Railroad Administration, 1980. [6] PRABHAKARAN A, TRENT R, SHARMA V. Impact performance of draft gears in 263 000pound gross rail load and 286 000 pound gross rail load tank car service[R]. Washington DC: Federal Railroad Administration, 2006. [7] LYONS M L, RIDDELL W T, KOCH K W. Analysis of accelerations measured during full-scale tank car impact tests[R]. Washington DC: Federal Railroad Administration, 2007. [8] SIMSON S A, PEARCE M. Longitudinal impact forces at 3piece bogie center bearings[C]∥ASME. Proceedings of the2005 ASME/IEEE Joint Rail Conference. New York: ASME, 2005: 45-50. [9] 杨亮亮, 罗世辉, 傅茂海, 等. 一种用于模拟车辆冲击试验的铁路货车纵向连接模型[J]. 中国铁道科学, 2017, 38 (1): 123-130. doi: 10.3969/j.issn.1001-4632.2017.01.17YANG Liang-liang, LUO Shi-hui, FU Mao-hai, et al. A longitudinal connection model of railway wagon for simulating vehicle impact test[J]. China Railway Science, 2017, 38 (1): 123-130. (in Chinese). doi: 10.3969/j.issn.1001-4632.2017.01.17 [10] STONIER R J, KUPPA S, THOMAS P J, et al. Fuzzy modelling of wagon wheel unloading due to longitudinal impact forces[C]∥ASME. Proceedings of the 2005 ASME/IEEE Joint Rail Conference. New York: ASME, 2005: 59-64. [11] SUN Y Q, COLE C, DHANASEKAR M, et al. Modelling and analysis of the crush zone of a typical Australian passenger train[J]. Vehicle System Dynamics, 2012, 50 (7): 1137-1155. doi: 10.1080/00423114.2012.656658 [12] ZHOU H C, WANG W B, HECHT M. Three-dimensional override analysis of crashed railway multiple units[J]. Vehicle System Dynamics, 2012, 50 (4): 663-674. doi: 10.1080/00423114.2011.631552 [13] 张锁怀, 孟旭. 地铁车辆连挂冲击非线性动力学模型[J]. 机械工程学报, 2012, 48 (9): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201209016.htmZHANG Suo-huai, MENG Xu. Nonlinear impacting dynamic model of a metro vehicle[J]. Journal of Mechanical Engineering, 2012, 48 (9): 111-116. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201209016.htm [14] 孙树磊, 李芾, 黄运华, 等. 车辆调车纵向冲击特性研究[J]. 铁道学报, 2014, 36 (1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401006.htmSUN Shu-lei, LI Fu, HUANG Yun-hua, et al. Research on longitudinal characteristics of vehicle shunting impact[J]. Journal of the China Railway Society, 2014, 36 (1): 22-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401006.htm [15] LU G. Collision behaviour of crashworthy vehicles in rakes[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1999, 213 (3): 143-160. doi: 10.1243/0954409991531100 [16] 周和超, 徐世洲, 詹军, 等. 基于有限元和多刚体动力学联合仿真技术的列车碰撞爬车现象研究[J]. 机械工程学报, 2017, 53 (12): 166-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712020.htmZHOU He-chao, XU Shi-zhou, ZHAN Jun, et al. Research on the overriding phenomenon during train collision based on FEM and MBS joint simulation[J]. Journal of Mechanical Engineering, 2017, 53 (12): 166-171. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712020.htm [17] 王文斌, 康康, 赵洪伦. 列车耐碰撞系统有限元和多体动力学联合仿真[J]. 同济大学学报: 自然科学版, 2011, 39 (10): 1552-1556. doi: 10.3969/j.issn.0253-374x.2011.10.026WANG Wen-bin, KANG Kang, ZHAO Hong-lun. Joint simulation of crashworthy train set based on finite element and multibody dynamic[J]. Journal of Tongji University: Natural Science, 2011, 39 (10): 1552-1556. (in Chinese). doi: 10.3969/j.issn.0253-374x.2011.10.026 [18] COLE C. Improvements to wagon connection modelling for longitudinal train simulation[C]∥Centre for Railway Engineering. CORE 1998 Engineering Innovation for a Competitive Edge Conference on Railway Engineering. Rockhampton: Centre for Railway Engineering, 1998: 1-8. [19] COLE C, SUN Y Q. Simulated comparisons of wagon coupler systems in heavy haul trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220 (3): 247-256. doi: 10.1243/09544097JRRT35 [20] COLE C, SPIRYAGIN M, WU Q, et al. Modelling, simulation and applications of longitudinal train dynamics[J]. Vehicle System Dynamics, 2017, 55 (1): 1498-1571. [21] WU Qing, LUO Shi-hui, QU Tian-wei, et al. Comparisons of draft gear damping mechanisms[J]. Vehicle System Dynamics, 2017, 55 (4): 501-516. doi: 10.1080/00423114.2016.1252049 [22] WU Q, SPIRYAGIN M, COLE C. Advanced dynamic modelling for friction draft gears[J]. Vehicle System Dynamics, 2015, 53 (4): 475-492. doi: 10.1080/00423114.2014.1002504 [23] WU Q, COLE C, SPIRYAGIN M, et al. Parallel multiobjective optimisations of draft gear designs[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232 (3): 744-758. doi: 10.1177/0954409717690981 [24] WU Q, YANG X J, COLE C, et al. Modeling polymer draft gears[J]. Vehicle System Dynamics, 2016, 54 (9): 1208-1225. doi: 10.1080/00423114.2016.1196822 [25] CHELI F, MELZI S. Experimental characterization and modelling of a side buffer for freight trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224 (6): 535-546. doi: 10.1243/09544097JRRT317 [26] TˇANˇASOIU A, COPACI I, OLARU S. On the static and dynamic characteristics of the shock insulators equipping railway vehicles[J]. Recent Researches in Energy, Environment, Devices, Systems, Communications and Computers, 2009, 978 (4): 103-107. [27] 魏伟, 赵连刚. 两万吨列车纵向动力学性能预测[J]. 大连交通大学学报, 2009, 30 (2): 39-43. doi: 10.3969/j.issn.1673-9590.2009.02.010WEI Wei, ZHAO Lian-gang. Prediction of longitudinal dynamic coupler force of 20 000ton connected train[J]. Journal of Dalian Jiaotong University, 2009, 30 (2): 39-43. (in Chinese). doi: 10.3969/j.issn.1673-9590.2009.02.010 [28] 常崇义, 王成国, 王永菲, 等. 基于响应面方法的车钩缓冲器特性曲线优化分析[J]. 中国铁道科学, 2007, 28 (6): 84-90. doi: 10.3321/j.issn:1001-4632.2007.06.016CHANG Chong-yi, WANG Cheng-guo, WANG Yong-fei, et al. Optimal analysis of the hysteretic characteristic curve for draft gear based on response surface method[J]. China Railway Science, 2007, 28 (6): 84-90. (in Chinese). doi: 10.3321/j.issn:1001-4632.2007.06.016 [29] 马卫华, 宋荣荣, 揭长安, 等. 缓冲器阻抗特性对重载列车动力学性能的影响[J]. 交通运输工程学报, 2011, 11 (2): 59-64. doi: 10.3969/j.issn.1671-1637.2011.02.010MA Wei-hua, SONG Rong-rong, JIE Chang-an. Influences of buffer impedance characteristics on dynamics performances for heavy haul train[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (2): 59-64. (in Chinese). doi: 10.3969/j.issn.1671-1637.2011.02.010 [30] 孙树磊, 李芾, 黄运华, 等. 重载货车摩擦缓冲器动力学模型研究[J]. 铁道学报, 2015, 37 (8): 17-23. doi: 10.3969/j.issn.1001-8360.2015.08.003SUN Shu-lei, LI Fu, HUANG Yun-hua, et al. Study on dynamic model of friction draft gear of heavy freight wagon[J]. Journal of the China Railway Society, 2015, 37 (8): 17-23. (in Chinese). doi: 10.3969/j.issn.1001-8360.2015.08.003 [31] 孙树磊. 重载列车纵向冲动动力学研究[D]. 成都: 西南交通大学, 2014.SUN Shu-lei. Research on heavy haul train longitudinal impulse dynamics[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese). [32] 中车青岛四方车辆研究所有限公司. 货车转向架摇枕横向载荷试验研究报告[R]. 青岛: 中车青岛四方车辆研究所有限公司, 2013.CRRC Qingdao Sifang Rolling Stock Research Institute Co., Ltd. Research report on freight wagon bolster lateral load test[R]. Qingdao: CRRC Qingdao Sifang Rolling Stock Research Institute Co., Ltd., 2013. (in Chinese).