Energy management strategy optimization of extended-range electric vehicle based on dynamic programming
-
摘要: 提出了一种动态规划改进算法, 根据约束条件确定未来可达状态序列, 通过计算离散状态点间的转移代价, 在保证求解精度的同时, 降低了离线优化计算量; 利用改进动态规划算法设计了增程式电动汽车能量管理策略, 根据能量管理优化问题特点, 建立了动力系统模型和适用于全局优化求解的系统状态方程, 并确定了以动力电池荷电状态为系统状态量和增程器发电功率为系统控制量; 在迭代计算过程中, 将发动机燃油费用和动力电池电能费用之和作为目标函数, 构建了基于北京主干道不同行驶里程仿真工况, 得到了驱动电机需求功率最优分配结果; 提取了增程器启停状态与动力电池荷电状态和驱动电机需求功率二者之间的控制规则, 利用最小二乘法对增程器功率分流比与驱动电机需求功率的分布规律进行拟合, 建立了基于优化规则的能量管理策略。仿真结果表明: 对于行驶里程为100km的仿真工况, 动态规划改进算法计算时间为7 239s, 与经典动态规划算法相比计算效率提高了78.2%;基于优化规则的能量管理策略能够获得类似动态规划改进算法的控制效果, 2种控制策略的动力电池荷电状态误差小于2.5%;相比实车电能消耗-电能维持型控制策略, 基于优化规则的控制策略能够使整车经济性提高5.4%, 使燃油经济性提高7.9%。Abstract: A modified dynamic programming algorithm was proposed.A future reachable states array was determined based on the constraints.The transfer costs among discretized states were calculated to guarantee the solving accuracy and reduce the off-line calculation burden.An energy management strategy for an extended-range electric vehicle was designed using a modified dynamic programming algorithm.Based on the energy management problem features, a dynamic system model was constructed, a system state equation for solving global optimization problems was determined, the battery state of charge (SOC) was selected as a state variable, and the extender output power was selected as a control variable.During the iterative calculation process, the cost of engine fuel and the battery energy were added in the objective function.Different driving-distance simulation cycles were constructed based on the Beijing arterial road cycle toobtain the optimal distribution result of required motor power.The control rules of extender start-stop corresponding to the battery SOC and required motor power were extracted, the distributed regulation between extender power split ratio and required power was fitted using the least square method, and the energy management strategy based on the optimal rules was established.Simulation result indicates that for the 100 km driving distance simulation cycle, the calculation time of the modified dynamic programming algorithm is 7 239 s, and the calculation efficiency improves by 78.2% compared to the classic dynamic programming algorithm.The optimal rule-based energy-management strategy has a similar control performance with the modified dynamic programming algorithm.The SOC errors of the two control strategies are within 2.5%.Compared to the charging deplete/charging sustain control strategy, the optimal rule-based control strategy improves the economy performance by approximately 5.4% and the fuel economy by approximately 7.9%.
-
表 1 E-REV动力系统部件主要参数
Table 1. Main parameters of E-REV dynamic system components
表 2 行驶工况参数
Table 2. Parameters of driving cycles
表 3 三种控制策略经济性对比
Table 3. Economy comparision among three control strategies
-
[1] 王军年, 刘健, 初亮, 等. 电动汽车驱动电机结构参数优化设计[J]. 交通运输工程学报, 2016, 16 (6): 72-81. doi: 10.3969/j.issn.1671-1637.2016.06.009WANG Jun-nian, LIU Jian, CHU Liang, et al. Optimal design of driving motor structural parameters for electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (6): 72-81. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.06.009 [2] 林歆悠, 林海波, 翟柳清, 等. 基于PSO-fuzzy的PHEV电量保持模式多目标控制策略[J]. 中国公路学报, 2016, 29 (10): 132-139. doi: 10.3969/j.issn.1001-7372.2016.10.015LIN Xin-you, LIN Hai-bo, ZHAI Liu-qing, et al. PSO-fuzzy multi-objective control strategy based on PHEV chargesustaining mode[J]. China Journal of Highway and Transport, 2016, 29 (10): 132-139. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.10.015 [3] 李宪民. 混联式电动汽车动力系统的建模和性能仿真[J]. 长安大学学报: 自然科学版, 2014, 34 (5): 161-168. doi: 10.3969/j.issn.1671-8879.2014.05.024LI Xian-min. Powertrain system modeling and performance simulation about parallel-series hybrid electric vehicle[J]. Journal of Chang'an University: Natural Science Edition, 2014, 34 (5): 161-168. (in Chinese). doi: 10.3969/j.issn.1671-8879.2014.05.024 [4] 林歆悠, 孙冬野, 邓涛. 基于极小值原理的混联混合动力客车能量管理策略优化[J]. 汽车工程, 2012, 34 (10): 865-870. doi: 10.3969/j.issn.1000-680X.2012.10.001LIN Xin-you, SUN Dong-ye, DENG Tao. Energy management strategy optimization for a series-parallel hybrid electric bus based on Pontryagin's minimum principle[J]. Automotive Engineering, 2012, 34 (10): 865-870. (in Chinese). doi: 10.3969/j.issn.1000-680X.2012.10.001 [5] 杜玖玉, 王贺武, 黄海燕. 基于规则的混联式混合动力系统控制策略[J]. 农业工程学报, 2012, 28 (增1): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2012S1028.htmDU Jiu-yu, WANG He-wu, HUANG Hai-yan. Rule-based control strategy application on power-split hybrid powertrain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (S1): 152-157. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2012S1028.htm [6] 梁俊毅, 张建龙, 马雪瑞, 等. 基于多混沌算子遗传算法的混合动力汽车控制策略优化[J]. 上海交通大学学报, 2015, 49 (4): 442-449, 456. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201504006.htmLIANG Jun-yi, ZHANG Jian-long, MA Xue-rui, et al. Control strategy optimization for hybrid electric vehicle based on multi-chaotic operators genetic algorithm[J]. Journal of Shanghai Jiaotong University, 2015, 49 (4): 442-449, 456. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201504006.htm [7] 秦大同, 赵新庆, 苏岭, 等. 插电式混合动力汽车变参数能量管理策略[J]. 中国公路学报, 2015, 28 (2): 112-118. doi: 10.3969/j.issn.1001-7372.2015.02.014QIN Da-tong, ZHAO Xin-qing, SU Ling, et al. Variable parameter energy management strategy for plug-in hybrid electric vehicle[J]. China Journal of Highway and Transport, 2015, 28 (2): 112-118. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.02.014 [8] 胡明寅, 杨福源, 欧阳明高, 等. 增程式电动车分布式控制系统的研究[J]. 汽车工程, 2012, 34 (3): 197-202. doi: 10.3969/j.issn.1000-680X.2012.03.003HU Ming-yin, YANG Fu-yuan, OUYANG Ming-gao, et al. A research on the distributed control system for extendedrange electric vehicle[J]. Automotive Engineering, 2012, 34 (3): 197-202. (in Chinese). doi: 10.3969/j.issn.1000-680X.2012.03.003 [9] 牛继高, 司璐璐, 周苏, 等. 增程式电动汽车能量控制策略的仿真分析[J]. 上海交通大学学报, 2014, 48 (1): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201401024.htmNIU Ji-gao, SI Lu-lu, ZHOU Su, et al. Simulation analysis of energy control strategy for an extended-range electric vehicle[J]. Journal of Shanghai Jiaotong University, 2014, 48 (1): 140-145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201401024.htm [10] 邹渊, 侯仕杰, 韩尔樑, 等. 基于动态规划的混合动力商用车能量管理策略优化[J]. 汽车工程, 2012, 34 (8): 663-668. doi: 10.3969/j.issn.1000-680X.2012.08.001ZOU Yuan, HOU Shi-jie, HAN Er-liang, et al. Dynamic programming-based energy management strategy optimization for hybrid electric commercial vehicle[J]. Automotive Engineering, 2012, 34 (8): 663-668. (in Chinese). doi: 10.3969/j.issn.1000-680X.2012.08.001 [11] SUN Dong-ye, LIN Xin-you, QIN Da-tong, etx al. Powerbalancing instantaneous optimization energy management for a novel series-parallel hybrid electric bus[J]. Chinese Journal of Mechanical Engineering, 2012, 25 (6): 1161-1170. doi: 10.3901/CJME.2012.06.1161 [12] CHEN Bo-chiuan, WU Yuh-yih, TSAI Hsien-chi. Design and analysis of power management strategy for range extended electric vehicle using dynamic programming[J]. Applied Energy, 2014, 113: 1764-1774. doi: 10.1016/j.apenergy.2013.08.018 [13] KO Y, LEE J, LEE H. A supervisory control algorithm for a series hybrid vehicle with multiple energy sources[J]. IEEE Transactions on Vehicular Technology, 2015, 64 (11): 4942-4953. doi: 10.1109/TVT.2015.2445872 [14] ZHANG Shuo, XIONG Rui. Adaptive energy management of aplug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming[J]. Applied Energy, 2015, 155: 68-78. doi: 10.1016/j.apenergy.2015.06.003 [15] CHEN Zheng, MI Chunting-chris, XU Jun, et al. Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63 (4): 1567-1580. doi: 10.1109/TVT.2013.2287102 [16] LI Wei-min, XU Guo-qing, XU Yang-sheng. Online learning control for hybrid electric vehicle[J]. Chinese Journal of Mechanical Engineering, 2012, 25 (1): 98-106. doi: 10.3901/CJME.2012.01.098 [17] 邹渊, 陈锐, 侯仕杰, 等. 基于随机动态规划的混合动力履带车辆能量管理策略[J]. 机械工程学报, 2012, 48 (14): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201214015.htmZOU Yuan, CHEN Rui, HOU Shi-jie, et al. Energy management strategy for hybrid electric tracked vehicle based on stochastic dynamic programming[J]. Journal of Mechanical Engineering, 2012, 48 (14): 91-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201214015.htm [18] YANG Ya-lian, HU Xiao-song, PEI Huan-xin, et al. Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: dynamic programming approach[J]. Applied Energy, 2016, 168: 683-690. doi: 10.1016/j.apenergy.2016.02.023 [19] LIN Chan-chiao, PENG Huei, GRIZZLE J W, et al. Power management strategy for a parallel hybrid electric truck[J]. IEEE Transactions on Control Systems Technology, 2003, 11 (6): 839-849. doi: 10.1109/TCST.2003.815606 [20] WU Bin, LIN Chan-chiao, FILIPI Z, et al. Optimal power management for a hydraulic hybrid delivery truck[J]. Vehicle System Dynamics, 2004, 42 (1/2): 23-40. [21] WANG Xi-ming, HE Hong-wen, SUN Feng-chun, et al. Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles[J]. Energies, 2015, 8 (4): 3225-3244. doi: 10.3390/en8043225 [22] 钱立军, 邱利宏, 辛付龙, 等. 插电式四驱混合动力汽车能量管理控制策略及其优化[J]. 农业工程学报, 2015, 31 (13): 68-76. doi: 10.11975/j.issn.1002-6819.2015.13.010QIAN Li-jun, QIU Li-hong, XIN Fu-long, et al. Energy management control strategy and optimization for plug-in4WD hybrid electric vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (13): 68-76. (in Chinese). doi: 10.11975/j.issn.1002-6819.2015.13.010 [23] PU Jin-huan, YIN Cheng-liang, ZHANG Jian-wu. Energy management strategy for parallel hybrid electric vehicles[J]. Chinese Journal of Mechanical Engineering, 2005, 18 (2): 215-219. doi: 10.3901/CJME.2005.02.215 [24] 王磊. 一种混联式混合动力客车能量管理及模式切换协调控制研究[D]. 上海: 上海交通大学, 2013.WANG Lei. Research on energy management strategy and mode transition control for a series-parallel hybrid electric bus[D]. Shanghai: Shanghai Jiaotong University, 2013. (in Chinese). [25] PATIL R M, FILIPI Z, FATHY H K. Comparison of supervisory control strategies for series plug-in hybrid electric vehicle powertrains through dynamic programming[J]. IEEE Transactions on Control Systems Technology, 2014, 22 (2): 502-509. doi: 10.1109/TCST.2013.2257778 [26] 申彩英. 串联混合动力汽车能量优化管理策略研究[D]. 天津: 天津大学, 2010.SHEN Cai-ying. Study on energy optimal management for series hybrid electric vehicles[D]. Tianjin: Tianjin University, 2010. (in Chinese).