留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市快速路匝道车辆汇入影响因素识别与行为预测

王尔根 孙剑

王尔根, 孙剑. 城市快速路匝道车辆汇入影响因素识别与行为预测[J]. 交通运输工程学报, 2018, 18(3): 180-188. doi: 10.19818/j.cnki.1671-1637.2018.03.018
引用本文: 王尔根, 孙剑. 城市快速路匝道车辆汇入影响因素识别与行为预测[J]. 交通运输工程学报, 2018, 18(3): 180-188. doi: 10.19818/j.cnki.1671-1637.2018.03.018
WANG Er-gen, SUN Jian. Merging influence factors recognition and behaviors prediction of on-ramp vehicles of urban expressway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 180-188. doi: 10.19818/j.cnki.1671-1637.2018.03.018
Citation: WANG Er-gen, SUN Jian. Merging influence factors recognition and behaviors prediction of on-ramp vehicles of urban expressway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 180-188. doi: 10.19818/j.cnki.1671-1637.2018.03.018

城市快速路匝道车辆汇入影响因素识别与行为预测

doi: 10.19818/j.cnki.1671-1637.2018.03.018
基金项目: 

国家自然科学基金项目 51278362

国家自然科学基金项目 U1764261

国家自然科学基金项目 51422812

详细信息
    作者简介:

    王尔根(1991-), 男, 辽宁鞍山人, 公安部交通管理科学研究所实习研究员, 从事交通组织、仿真与数据挖掘研究

    孙剑:SUN Jian(1979-), male, professor, PhD, sunjian@tongji.edu.cn

    通讯作者:

    孙剑(1979-), 男, 山东齐河人, 同济大学教授, 工学博士, 从事交通仿真与智能网联汽车研究

  • 中图分类号: U491.255

Merging influence factors recognition and behaviors prediction of on-ramp vehicles of urban expressway

More Information
  • 摘要: 分析了美国US101快速路瓶颈路段(简称“US101”) 和上海市延安高架上虹许路匝道瓶颈路段(简称“SHHX”) 的车辆轨迹数据, 研究了城市快速路入口匝道车辆的汇入行为; 考虑了汇入行为的13个瞬时影响因素和25个历史经历影响因素, 采用随机森林算法对38个影响因素进行重要度排序, 并识别关键影响因素; 分别对2个瓶颈路段构建了贝叶斯网络汇入行为预测模型, 并评价了模型预测精度。分析结果表明: 瓶颈路段US101和SHHX共有14个关键影响因素, 包括6个历史经历影响因素, 其中瓶颈路段US101和SHHX历史经历影响因素分别占关键影响因素总数的45.45%、36.36%, 说明汇入行为的历史经历影响因素对最终汇入决策有显著的影响; 考虑历史经历影响因素的贝叶斯网络模型预测精度较高, 瓶颈路段US101和SHHX汇入行为的总体预测精度分别提高了2.53%、8.85%, 其中未考虑历史经历影响因素时, 瓶颈路段US101和SHHX汇入行为的总体预测精度分别为87.94%和73.17%, 考虑历史经历影响因素时, 瓶颈路段US101和SHHX汇入行为的总体预测精度分别为90.47%和82.02%;此外, 预测模型无过度拟合, 测试集汇入事件与非汇入事件的预测精度之差在1.2%以内。

     

  • 图  1  US101瓶颈路段

    Figure  1.  US101bottleneck section

    图  2  SHHX瓶颈路段

    Figure  2.  SHHX bottleneck section

    图  3  拍摄方位

    Figure  3.  Shooting orientation

    图  4  汇入主线过程

    Figure  4.  Process of merging into mainline

    图  5  车头空距

    Figure  5.  Space headways

    图  6  US101汇入行为影响因素重要度分布

    Figure  6.  Importance degree distribution of merging behaviors factors at US101

    图  7  SHHX汇入行为影响因素重要度分布

    Figure  7.  Importance degree distribution of merging behaviors factors at SHHX

    表  1  瞬时影响因素

    Table  1.   Instant influence factors

    下载: 导出CSV

    表  2  历史经历影响因素

    Table  2.   Influence factors of history experience

    下载: 导出CSV

    表  3  关键影响因素重要度排序

    Table  3.   Importance degree ranking of critical influence factors

    下载: 导出CSV

    表  4  预测精度结果对比

    Table  4.   Results comparision of prediction accuracies

    下载: 导出CSV
  • [1] CHEVALLIER E, LECLERCQ L. Do microscopic merging models reproduce the observed priority sharing ratio in congestion?[J]. Transportation Research Part C: Emerging Technologies, 2009, 17 (3): 328-336. doi: 10.1016/j.trc.2009.01.002
    [2] BONNIN S, WEISSWANGE T H, KUMMERT F, et al. Accurate behavior prediction on highways based on a systematic combination of classifiers[C]∥IEEE. 2013IEEE Intelligent Vehicles Symposium. New York: IEEE, 2013: 242-249.
    [3] 左康, 刘启远, 孙剑. 城市快速路匝道汇入行为建模及仿真[J]. 系统仿真学报, 2017, 29 (9): 1895-1906. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201709004.htm

    ZUO Kang, LIU Qi-yuan, SUN jian. Modeling and simulation of merging behavior at urban expressway on-ramp[J]. Journal of System Simulation, 2017, 29 (9): 1895-1906. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201709004.htm
    [4] 臧志刚, 陆锋, 李海峰, 等. 7种微观交通仿真系统的性能评价与比较研究[J]. 交通与计算机, 2007, 25 (1): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200701017.htm

    ZANG Zhi-gang, LU Feng, LI Hai-feng, et al. Performance evaluation and comparison of seven microscopic transportation simulation systems[J]. Computer and Communications, 2007, 25 (1): 66-70. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200701017.htm
    [5] SONG Rui, SUN Jian. Calibration of a micro-traffic simulation model with respect to the spatial-temporal evolution of expressway on-ramp bottlenecks[J]. Simulation: Transactions of the Society for Modeling and Simulation International, 2016, 92 (6): 535-546. doi: 10.1177/0037549716645197
    [6] SUN Jie, LI Zhi-peng, SUN Jian. Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors[J]. Physica A: Statistical Mechanics and its Applications, 2015, 440: 57-67. doi: 10.1016/j.physa.2015.08.007
    [7] 孙剑, 胡家琦, 孙杰. 城市快速路交织区通行能力估计模型[J]. 中国公路学报, 2016, 29 (4): 114-122. doi: 10.3969/j.issn.1001-7372.2016.04.014

    SUN Jian, HU Jia-qi, SUN Jie. Capacity estimation model on weaving segments of urban expressway[J]. China Journal of Highway and Transport, 2016, 29 (4): 114-122. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.04.014
    [8] 刘好德, 郑进炫, 孙剑, 等. 基于多层统计模型的城市快速路汇入区通行能力影响因素分析[J]. 公路与汽运, 2016 (5): 16-21, 24. doi: 10.3969/j.issn.1671-2668.2016.05.006

    LIU Hao-de, ZHENG Jin-xuan, SUN Jian, et al. Capacity influence factors analysis on merging segments of urban expressway based on multilayer statistical models[J]. Highways and Automotive Applications, 2016 (5): 16-21, 24. (in Chinese). doi: 10.3969/j.issn.1671-2668.2016.05.006
    [9] YANG Qi, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies, 1996, 4 (3): 113-129. doi: 10.1016/S0968-090X(96)00006-X
    [10] HOU Yi, EDARA P, SUN C. Modeling mandatory lane changing using bayes classifier and decision trees[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (2): 647-655. doi: 10.1109/TITS.2013.2285337
    [11] SUN Jian, OUYANG Ji-xiang, YANG Jian-hao. Modeling and analysis of merging behavior at expressway on-ramp bottlenecks[J]. Transportation Research Record, 2014 (2421): 74-81.
    [12] MENG Qiang, WENG Jin-Xian. Cellular automata model for work zone traffic[J]. Transportation Research Record, 2010 (2188): 131-139.
    [13] SUN Jian, SUN Jie, CHEN Peng. Use of support vector machine models for real-time prediction of crash risk on urban expressways[J]. Transportation Research Record, 2014 (2432): 91-98.
    [14] 孙剑, 蒋舜, 欧阳吉祥. 城市快速路驶入匝道瓶颈车辆汇入行为[J]. 同济大学学报: 自然科学版, 2015, 43 (4): 549-554. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201504010.htm

    SUN Jian, JIANG Shun, OUYANG Ji-xiang. Modeling the vehicle merging behaviors at urban expressway on-ramp bottlenecks[J]. Journal of Tongji University: Natural Sicence, 2015, 43 (4): 549-554. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201504010.htm
    [15] KUMAR P, PERROLLAZ M, LEF S, et al. Learning-based approach for online lane change intention prediction[C]∥IEEE. 2013IEEE Intelligent Vehicles Symposium. New York: IEEE, 2013: 797-802.
    [16] WANG Er-gen, SUN Jian, JIANG Shun, et al. Modeling the various merging bahaviors at expressway on-ramp bottlenecks using support vector machine models[J]. Transportation Research Procedia, 2017, 25: 1327-1341. doi: 10.1016/j.trpro.2017.05.157
    [17] HOU Yi, EDARA P, SUN C. A genetic fuzzy system for modeling mandatory lane changing[C]∥IEEE. 2012 15th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2012: 1044-1048.
    [18] HOU Yi, EDARA P, SUN C. Situation assessment and decision making for lane change assistance using ensemble learning methods[J]. Expert Systems with Applications, 2015, 42 (8): 3875-3882. doi: 10.1016/j.eswa.2015.01.029
    [19] MARCZAK F, DAAMEN W, BUISSON C. Key variables of merging behaviour: empirical comparison between two sites and assessment of gap acceptance theory[J]. Procedia-Social and Behavioral Sciences, 2013, 80: 678-697. doi: 10.1016/j.sbspro.2013.05.036
    [20] MIGLETZ J, GRAHAM J L, ANDERSON I B, et al. Work zone speed limit procedure[J]. Transportation Research Record, 1999 (1657): 24-30.
    [21] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45 (1): 5-32. doi: 10.1023/A:1010933404324
    [22] REIF D M, MOTSINGER A A, MCKINNEY B A, et al. Feature selection using a random forests classifier for the integrated analysis of multiple data types[C]∥IEEE. 3rd Computational Intelligence in Bioinformatics and Computational Biology Symposium. New York: IEEE, 2006: 171-178.
    [23] SUN Jie, SUN Jian. A dynamic Bayesian network model for real-time crash prediction using traffic speed conditions data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 176-186. doi: 10.1016/j.trc.2015.03.006
    [24] 周涛, 翟长旭, 高志刚. 基于贝叶斯网络的高速公路预警系统研究[J]. 公路工程, 2007, 32 (4): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200704040.htm

    ZHOU Tao, ZHAI Chang-xu, GAO Zhi-gang. Study on the forewarning system of freeway based on Bayesian networks[J]. Highway Engineering, 2007, 32 (4): 163-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200704040.htm
    [25] DING Wei, SONG P X K. EM algorithm in Gaussian copula with missing data[J]. Computational Statistics and Data Analysis, 2016, 101: .
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  737
  • HTML全文浏览量:  153
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回