留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的Sliding Window在线船舶AIS轨迹数据压缩算法

高邈 史国友 李伟峰

高邈, 史国友, 李伟峰. 改进的Sliding Window在线船舶AIS轨迹数据压缩算法[J]. 交通运输工程学报, 2018, 18(3): 218-227. doi: 10.19818/j.cnki.1671-1637.2018.03.022
引用本文: 高邈, 史国友, 李伟峰. 改进的Sliding Window在线船舶AIS轨迹数据压缩算法[J]. 交通运输工程学报, 2018, 18(3): 218-227. doi: 10.19818/j.cnki.1671-1637.2018.03.022
GAO Miao, SHI Guo-you, LI Wei-feng. Online compression algorithm of AIS trajectory data based on improved sliding window[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 218-227. doi: 10.19818/j.cnki.1671-1637.2018.03.022
Citation: GAO Miao, SHI Guo-you, LI Wei-feng. Online compression algorithm of AIS trajectory data based on improved sliding window[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 218-227. doi: 10.19818/j.cnki.1671-1637.2018.03.022

改进的Sliding Window在线船舶AIS轨迹数据压缩算法

doi: 10.19818/j.cnki.1671-1637.2018.03.022
基金项目: 

国家自然科学基金项目 51579025

辽宁省自然科学基金项目 20170540090

详细信息
    作者简介:

    高邈(1994-), 男, 吉林白山人, 大连海事大学工学博士研究生, 从事交通信息工程研究

    史国友(1968-), 男, 安徽桐城人, 大连海事大学教授, 工学博士

  • 中图分类号: U675.7

Online compression algorithm of AIS trajectory data based on improved sliding window

More Information
  • 摘要: 分析了船舶AIS数据的时间序列特征与船舶操纵特性, 提出了改进的Sliding Window在线压缩算法; 计算了277艘船舶总计1 026 408个坐标点的AIS轨迹数据, 确定了合适的压缩阈值, 分析了距离阈值与角度阈值对算法压缩率的敏感程度; 根据压缩率图像的阶跃点, 推荐了高、中、低3个档位的距离阈值和1个角度阈值, 对比了Douglas-Peucker算法和改进Sliding Window算法的压缩率与压缩效率。试验结果表明: 随着压缩率的提高, 压缩后所剩下的点越来越少, 数据所保留下来的有用信息也越来越少; 压缩率与距离阈值、角度阈值均呈正比; 经量纲为1化处理的高、中、低档位压缩距离阈值分别为43%、38%、33%船长; 距离阈值为130m时, 角度阈值超过9°后压缩率平稳, 所以推荐角度阈值为9°, 与《海港总体设计规范》 (JTS 165—2013) 中风流压差角8°相接近; 随着距离阈值的增大, Douglas-Peucker算法和改进Sliding Window算法压缩率趋于相近, 当距离阈值为120 m时, Douglas-Peucker算法压缩率仅比改进Sliding Window算法高1.74%;在5种距离阈值的情况下, Douglas-Peucker算法运行所用的平均时间是改进Sliding Window算法的5.39倍; 随着数据量的增大, 2种算法压缩效率的差距更加明显。可见, 改进的Sliding Window算法能在降低压缩风险的同时大幅提高压缩效率, 可以在数据持续更新的状态下一直保持压缩状态, 与普通压缩模式相比, 系统所占用的资源更少, 处理效率更高, 可用于船舶轨迹数据处理、电子海图显示与对船舶关键行为特征提取等方面。

     

  • 图  1  经典Sliding Window压缩算法

    Figure  1.  Standard sliding window compression algorithm

    图  2  改进的Sliding Window压缩算法流程

    Figure  2.  Flow of improved sliding window compression algorithm

    图  3  改进的Sliding Window压缩算法

    Figure  3.  Improved sliding window compression algorithm

    图  4  工况1的压缩效果

    Figure  4.  Compression effect under working condition 1

    图  5  工况2的压缩效果

    Figure  5.  Compression effect under working condition 2

    图  6  工况3的压缩效果

    Figure  6.  Compression effect under working condition 3

    图  7  工况4的压缩效果

    Figure  7.  Compression effect under working condition 4

    图  8  压缩率与距离阈值、角度阈值的三维关系

    Figure  8.  3Drelationship between compression ratio and distance threshold and angle threshold

    图  9  距离阈值为130m时角度阈值与压缩率之间的关系

    Figure  9.  Relationship between angle threshold and compression ratio when distance threshold is 130m

    图  10  角度阈值为15°时距离阈值与压缩率之间的关系

    Figure  10.  Relationship between distance threshold and compression ratio when angle threshold is 15°

    图  11  高、中、低档位压缩

    Figure  11.  Advanced, intermediate, and inferior compression

    图  12  原始AIS轨迹

    Figure  12.  Original AIS trajectory

    图  13  采用改进Sliding Window算法压缩的AIS轨迹

    Figure  13.  AIS trajectory compressed by improved sliding window algorithm

    图  14  采用Douglas-Peucker算法压缩后AIS轨迹

    Figure  14.  AIS trajectory compressed by Douglas-Peucker algorithm

    表  1  不同阈值下的工况

    Table  1.   Working conditions under different thresholds

    下载: 导出CSV

    表  2  两种压缩算法效率对比

    Table  2.   Compression efficiency comparison of two algorithms

    下载: 导出CSV
  • [1] 魏照坤, 周康, 魏明, 等. 基于AIS数据的船舶运动模式识别与应用[J]. 上海海事大学学报, 2016, 37 (2): 17-22, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY201602005.htm

    WEI Zhao-kun, ZHOU Kang, WEI Ming, et al. Ship motion pattern recognition and application based on AIS data[J]. Journal of Shanghai Maritime University, 2016, 37 (2): 17-22, 71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY201602005.htm
    [2] 任亚磊. 基于AIS数据的船舶会遇特征研究[D]. 武汉: 武汉理工大学, 2013.

    REN Ya-lei. Study on ship encounters using AIS data[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese).
    [3] 江俊文, 王晓玲. 轨迹数据压缩综述[J]. 华东师范大学学报: 自然科学版, 2015 (5): 61-76. doi: 10.3969/j.issn.1000-5641.2015.05.005

    JIANG Jun-wen, WANG Xiao-ling. Review on trajectory data compression[J]. Journal of East China Normal University: Natural Science, 2015 (5): 61-76. (in Chinese). doi: 10.3969/j.issn.1000-5641.2015.05.005
    [4] 张树凯, 刘正江, 张显库, 等. 基于Douglas-Peucker算法的船舶AIS航迹数据压缩[J]. 哈尔滨工程大学学报, 2015, 36 (5): 595-599. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201505002.htm

    ZHANG Shu-kai, LIU Zheng-jiang, ZHANG Xian-ku, et al. A method for AIS track data compression based on DouglasPeucker algorithm[J]. Journal of Harbin Engineering University, 2015, 36 (5): 595-599. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201505002.htm
    [5] 徐凯, 邱家瑜, 李燕. 一种加入时间维的船舶轨迹高效离线压缩算法研究[J]. 计算机科学, 2017, 44 (11A): 498-502. doi: 10.11896/j.issn.1002-137X.2017.11A.106

    XU Kai, QIU Jia-yu, LI Yan. Offline efficient compression algorithm for AIS data retains time elapsing dimension[J]. Computer Science, 2017, 44 (11A): 498-502. (in Chinese). doi: 10.11896/j.issn.1002-137X.2017.11A.106
    [6] MERATNIA N, DE BY R A. Spatiotemporal compression techniques for moving point objects[J]. 2004, 2992: 765-782.
    [7] KELLARIS G, PELEKIS N, THEODORIDIS Y. Trajectory Compression under Network Constraints[J]. Lecture Notes in Computer Science, 2009, 5644: 392-398.
    [8] LU Cheng-jiao, CHEN Feng, XU Yong-zhi, et al. A trajectory compression algorithm based on non-uniform quantization[C]∥IEEE. 12th International Conference on Fuzzy Systems and Knowledge Discovery. New York: IEEE, 2015: 2469-2474.
    [9] DUTTA S, BHATTACHERJEE S, NARANG A. Towards"intelligent compression"in streams: a biased reservoir sampling based Bloom filter approach[C]∥ACM. 15th International Conference on Extending Database Technology, New York: ACM, 2012: 425-426.
    [10] 张达夫, 张昕明. 基于时空特性的GPS轨迹数据压缩算法[J]. 交通信息与安全, 2013, 31 (3): 6-9. doi: 10.3963/j.issn.1674-4861.2013.03.002

    ZHANG Da-fu, ZHANG Xin-ming. A spatiotemporal compression algorithm for GPS trajectory data[J]. Journal of Transport Information and Safety, 2013, 31 (3): 6-9. (in Chinese). doi: 10.3963/j.issn.1674-4861.2013.03.002
    [11] JI Y, LIU H, LIU X, et al. A comparison of road-networkconstrained trajectory compression methods[C]∥IEEE. 22nd IEEE International Conference on Parallel and Distributed Systems. New York: IEEE, 2016: 256-263.
    [12] HAN Yun-heng, SUN Wei-wei, ZHENG Bai-hua. Compress: a comprehensive framework of trajectory compression in road networks[J]. ACM Transactions on Database Systems, 2017, 42 (2): 1-49.
    [13] 朱猛, 孙剑. 基于MBR的GPS轨迹数据压缩算法[J]. 信阳农林学院学报, 2016, 26 (1): 117-120, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-XYNG201601037.htm

    ZHU Meng, SUN Jian. GPS trajectory data compression algorithm based on MBR[J]. Journal of Xinyang College of Agriculture and Forestry, 2016, 26 (1): 117-120, 123. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XYNG201601037.htm
    [14] 吴家皋, 夏轩, 刘林峰. 基于MapReduce的轨迹压缩并行化方法[J]. 计算机应用, 2017, 37 (5): 1282-1286, 1330. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201705011.htm

    WU Jia-gao, XIA Xuan, LIU Lin-feng. Parallel trajectory compression method based on MapReduce[J]. Journal of Computer Application, 2017, 37 (5): 1282-1286, 1330. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201705011.htm
    [15] MUCKELL J, PATIL V, PING Fan. SQUISH: an online approach for GPS trajectory compression[C]∥ACM. 2nd International Conference on Computing for Geospatial Research and Applications. New York: ACM, 2011: 13-20.
    [16] 李浩, 黄艳, 马岩蔚. 基于三次多项式曲线的轨迹平滑压缩算法[J]. 组合机床与自动化加工技术, 2016 (6): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201606004.htm

    LI Hao, HUANG Yan, MA Yan-wei. The smooth compression algorithm based on cubic polynomial curve[J]. Modular Machine Tooland Automatic Manufacturing Technique, 2016 (6): 12-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201606004.htm
    [17] 樊庆富, 张磊, 刘磊军, 等. 基于偏移量计算的在线GPS轨迹数据压缩[J]. 计算机工程与应用, 2017, 53 (8): 254-259. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201708046.htm

    FAN Qing-fu, ZHANG Lei, LIU Lei-jun, et al. Online GPS trajectory data compression based on offset calculation[J]. Computer Engineering and Applications, 2017, 53 (8): 254-259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201708046.htm
    [18] HERSHKOVITS Y, ZIV J. On sliding window universal data compression with limited memory[J]. IEEE Transactions on Information Theory, 1998, 44 (1): 66-78. doi: 10.1109/18.650988
    [19] CHEN Ye-hong, PARK P S, GAO Qian. An enhanced modelbased tracking algorithm with dynamic adjustment of learning parameters according to online performance evaluation[J]. Indian Journal of Science Technology, 2015, 8 (26): 1-6.
    [20] 丁振国. 船舶AIS数据云存储系统研究[J]. 浙江交通职业技术学院学报, 2016, 17 (1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJZJ201601009.htm

    DING Zhen-guo. A Study on the cloud storage system of ship's AIS data[J]. Journal of Zhejiang Institute of Communications, 2016, 17 (1): 37-42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJZJ201601009.htm
    [21] 吴家皋, 刘敏, 韦光, 等. 一种改进的滑动窗口轨迹数据压缩算法[J]. 计算机技术与发展, 2015, 25 (12): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201512011.htm

    WU Jia-gao, LIU Min, WEI Guang, et al. An improved trajectory data compression algorithm ofsliding window[J]. Computer Technology and Development, 2015, 25 (12): 47-51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201512011.htm
    [22] 赵友桥, 王坚, 路松峰, 等. 一种后缀数组与滑动窗口结合的压缩算法[J]. 计算机工程与应用, 2012, 48 (15): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201215014.htm

    ZHAO You-qiao, WANG Jian, LU Song-feng, et al. A sliding window compression algorithm based on suffix array[J]. Computer Engineering and Applications, 2012, 48 (15): 59-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201215014.htm
    [23] KEOGH E, CHU S, HART D, et al. An online algorithm for segmenting time series[C]∥IEEE. 2001IEEE International Conference on Data Mining. New York: IEEE, 2001: 289-296.
    [24] INENAGA S, SHINOHARA A, TAKEDA M, et al. Compact directed acyclic word graphs for asliding window[J]. Lecture Notes in Computer Science, 2002, 2476: 310-324.
    [25] 王栩, 李建中, 王伟平. 基于滑动窗口的数据流压缩技术及连续查询处理方法[J]. 计算机研究与发展, 2004, 41 (10): 1639-1644. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ200410005.htm

    WANG Xu, LI Jian-zhong, WANG Wei-ping. Processing compressedsliding window continuous queries over data streams[J]. Journal of computer research and development, 2004, 41 (10): 1639-1644. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ200410005.htm
    [26] BELYAEV E, FORCHHAMMER S, LIU Kai. An adaptive multialphabet arithmetic coding based on generalized virtual sliding window[J]. IEEE Signal Processing Letters, 2017, 24 (7): 1034-1038.
    [27] 史国友, 朱公志, 王玉梅, 等. 恒向线主题直接正反解的高精度算法[J]. 大连海事大学学报, 2009, 35 (2): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200902002.htm

    SHI Guo-you, ZHU Gong-zhi, WANG Yu-mei, et al. High accurate algorithm for forward and inverse solution of rhumb line's problem[J]. Journal of Dalian Maritime University, 2009, 35 (2): 5-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200902002.htm
    [28] 毕晓君, 樊松. 基于突变理论的图像边缘检测技术[J]. 应用科技, 2008, 35 (6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YYKJ200806002.htm

    BI Xiao-jun, FAN Song. Edge detection based on catastrophic theory[J]. Applied Science and Technology, 2008, 35 (6): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYKJ200806002.htm
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  831
  • HTML全文浏览量:  255
  • PDF下载量:  892
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-18
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回