留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合式路面层间界面剪切滑移特性

曹明明 陆阳 黄晚清 李一鸣 吴志勇

曹明明, 陆阳, 黄晚清, 李一鸣, 吴志勇. 复合式路面层间界面剪切滑移特性[J]. 交通运输工程学报, 2018, 18(4): 1-11. doi: 10.19818/j.cnki.1671-1637.2018.04.001
引用本文: 曹明明, 陆阳, 黄晚清, 李一鸣, 吴志勇. 复合式路面层间界面剪切滑移特性[J]. 交通运输工程学报, 2018, 18(4): 1-11. doi: 10.19818/j.cnki.1671-1637.2018.04.001
CAO Ming-ming, LU Yang, HUANG Wan-qing, LI Yi-ming, WU Zhi-yong. Interlaminar interface shear slip characteristics of composite pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 1-11. doi: 10.19818/j.cnki.1671-1637.2018.04.001
Citation: CAO Ming-ming, LU Yang, HUANG Wan-qing, LI Yi-ming, WU Zhi-yong. Interlaminar interface shear slip characteristics of composite pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 1-11. doi: 10.19818/j.cnki.1671-1637.2018.04.001

复合式路面层间界面剪切滑移特性

doi: 10.19818/j.cnki.1671-1637.2018.04.001
基金项目: 

国家自然科学基金项目 51378438

四川省交通科技项目 2015自4-1

详细信息
    作者简介:

    曹明明(1987-), 男, 甘肃静宁人, 西南交通大学工学博士研究生, 从事沥青路面结构与材料研究

    陆阳(1957-), 男, 四川成都人, 西南交通大学教授, 工学博士

  • 中图分类号: U416.224

Interlaminar interface shear slip characteristics of composite pavement

More Information
  • 摘要: 依托南大梁高速公路复合式路面试验段, 测试了不同糙化界面的露骨率和构造深度, 并钻取芯样进行45°剪切试验。结合45°剪切试验测试结果与层间剪切过程力学特性, 将层间剪变特性曲线划分为弹性阶段、破坏阶段、剪切强度衰减阶段和残余阶段, 采用界面构造深度、剪切强度峰值、剪切强度峰值对应层间相对滑动位移和残余剪切强度等指标评价层间剪变特性, 分析了界面糙化方式、防水黏结材料类型和用量、温度和加载速率对复合式路面层间剪变特性的影响。测试结果表明: 凿毛界面构造深度(1.17mm) 大于喷砂界面构造深度(0.37mm), 结合不同糙化界面下剪切过程的层间力学特性差异, 凿毛界面较喷砂界面所成型复合试件具有更优的抗剪性能; 防水黏结材料相同时, 凿毛界面层间剪切强度峰值对应层间相对滑动位移(0.19~0.79mm) 较喷砂界面(0.16~0.33mm) 更大, 且防水黏结材料对残余剪切强度和剪切强度峰值的影响大于层间剪切强度峰值对应层间相对滑动位移的影响; 整体而言, 温度对层间剪变特性影响显著, 5℃时层间剪切强度峰值为40℃时的7.0~10.0倍, 测试条件对层间剪切强度影响较大, 50mm·min-1加载速率时测试层间剪切强度峰值为5mm·min-1加载速率时的1.9~3.5倍。可见, 凿毛糙化方式更有助于提高复合式路面层间剪切强度, 且复合式路面层间剪变特性需采用多指标予以评价。

     

  • 图  1  水泥混凝土基面病害与钻芯取样

    Figure  1.  Disease of cement concrete base surface and core sample drilling

    图  2  防水黏结层铺设与45°剪切试验

    Figure  2.  Waterproof cohesive layer paving and 45°shear test

    图  3  45°剪切试验τ-S曲线

    Figure  3.  τ-S curve in 45°shear test

    图  4  糙化界面

    Figure  4.  Roughened interfaces

    图  5  糙化方式对层间滑移特性的影响

    Figure  5.  Effect of roughened methods on interlaminar slip characteristics

    图  6  防水黏结材料用量对喷砂界面滑移特性影响

    Figure  6.  Effect of waterproof cohesive material amounts on slip behaviors of sand blasting interface

    图  7  防水黏结材料用量对凿毛界面滑移特性影响

    Figure  7.  Effect of waterproof cohesive material amounts on slip behaviors of chiseling interface

    图  8  温度对防水黏结涂料层间滑移特性影响

    Figure  8.  Effect of temperatures on interlaminar slip characteristics with waterproof cohesive coating

    图  9  温度对SBS改性沥青碎石封层层间滑移特性影响

    Figure  9.  Effect of temperatures on interlaminar slip characteristics with SBS modified asphalt gravel seal layer

    图  10  加载速率对层间滑移特性影响

    Figure  10.  Effect of loading rates on interlaminar slip characteristics

    表  1  防水黏结涂料技术指标测试结果

    Table  1.   Technical index test result of waterproof cohesive coating

    下载: 导出CSV

    表  2  SBS改性沥青技术指标测试结果

    Table  2.   Technical index test result of SBS modified asphalt

    下载: 导出CSV

    表  3  碎石技术指标测试结果

    Table  3.   Technical index test result of gravel

    下载: 导出CSV

    表  4  凿毛试件失效剪切强度和剪切强度峰值

    Table  4.   Failure shear strengths and peak shear strengths of chiseling specimens

    下载: 导出CSV
  • [1] 李明国. 混凝土梁桥沥青铺装结构分析与材料优化研究[D]. 西安: 长安大学, 2010.

    LI Ming-guo. Structure analysis and material optimization for concrete beam bridge asphalt mixture deck[D]. Xi'an: Chang'an University, 2010. (in Chinese).
    [2] KHWEIR K, FORDYCE D. Influence of layer bonding on the prediction of pavement life[J]. Transport, 2003, 156 (2): 73-83.
    [3] 黄优, 刘朝晖, 李盛, 等. 不同层间结合状态下刚柔复合式路面的剪应力分析[J]. 公路交通科技, 2015, 32 (6): 32-38, 61. doi: 10.3969/j.issn.1002-0268.2015.06.006

    HUANG You, LIU Zhao-hui, LI Sheng, et al. Analysis of shear stress of rigid-flexible composite pavement under different interlaminar bonding conditions[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (6): 32-38, 61. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.06.006
    [4] 乔志, 王选仓, 张志芳, 等. 半刚性基层双层连续摊铺层间结合状态[J]. 交通运输工程学报, 2016, 16 (3): 28-34. doi: 10.3969/j.issn.1671-1637.2016.03.004

    QIAO Zhi, WANG Xuan-cang, ZHANG Zhi-fang, et al. Interlayer combination state of double-layer continuous paving semi-rigid base[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (3): 28-34. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.03.004
    [5] CASTRO M. Structural design of asphalt pavement on concrete bridges[J]. Canadian Journal of Civil Engineering, 2004, 31 (4): 695-702. doi: 10.1139/l04-032
    [6] KRUNTCHEVA M R, COLLOP A C, THOM N H. Effect of bond condition on flexible pavement performance[J]. Journal of Transportation Engineering, 2005, 131 (11): 880-888. doi: 10.1061/(ASCE)0733-947X(2005)131:11(880)
    [7] RAAB C, PARTL M N. Interlayer bonding of binder, base and subbase layers of asphalt pavements: long-term performance[J]. Construction and Building Materials, 2009, 23 (8): 2926-2931. doi: 10.1016/j.conbuildmat.2009.02.025
    [8] WEST R C, ZHANG Jing-na, MOORE J. Evaluation of bond strength between pavement layers[R]. Auburn: Auburn University, 2005.
    [9] 张娟. 水泥混凝土桥面防水粘结层性能研究[D]. 西安: 长安大学, 2008.

    ZHANG Juan. Study on the waterproofing and bonding layer of concrete bridge deck[D]. Xi'an: Chang'an University, 2008. (in Chinese).
    [10] 王火明. 刚柔性路面界面层强度特性研究[D]. 重庆: 重庆交通大学, 2008.

    WANG Huo-ming. Research on strength characteristics of the interface layer of rigid-flexible pavement[D]. Chongqing: Chongqing Jiaotong University, 2008. (in Chinese).
    [11] ZHEN Leng, AL-QADI I L, CARPENTER S H, et al. Interface bonding between hot-mix asphalt and various Portland cement concrete surfaces: assessment of accelerated pavement testing and measurement of interface strain[J]. Transportation Research Record, 2009 (2127): 20-28.
    [12] ZHEN Leng, OZER H, AL-QADI I L, et al. Interface bonding between hot-mix asphalt and various Portland cement concrete surfaces: laboratory assessment[J]. Transportation Research Record, 2008 (2057): 46-53.
    [13] MOHAMMAD L N, BAE A, ELSEIFI M A, et al. Effects of pavement surface type and sample preparation method on tack coat interface shear strength[J]. Transportation Research Record, 2010 (2180): 93-101.
    [14] 罗志刚, 曾俊, 王随原. 界面污染对半刚性基层与沥青混凝土面层层间黏结性能影响的试验研究[J]. 公路, 2011 (1): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201101021.htm

    LUO Zhi-gang, ZENG Jun, WANG Sui-yuan. Experiment and study on influence of interface pollution on interlaminar bonding performance between semi-rigid base and asphalt concrete course[J]. Highway, 2011 (1): 109-113. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201101021.htm
    [15] 曹明明, 黄晚清, 陆阳, 等. 复合式路面层间剪切性能试验和评价方法[J]. 公路交通科技, 2018, 35 (4): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201804006.htm

    CAO Ming-ming, HUANG Wan-qing, LU Yang, et al. Test and evaluation method of interlaminar shear property of composite pavement[J]. Journal of Highway and Transportation Research and Development, 2018, 35 (4): 40-48. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201804006.htm
    [16] 李忠林. 水泥砼桥面铺装结构与层间界面力学特性研究[D]. 重庆: 重庆交通大学, 2009.

    LI Zhong-lin. Research on cement concrete bridge deck interface layer structure and mechanical properties[D]. Chongqing: Chongqing Jiaotong University, 2009. (in Chinese).
    [17] 裴建中. 桥面柔性防水材料技术性能研究[D]. 西安: 长安大学, 2001.

    PEI Jian-zhong. Study on technical performance of flexible waterproof material for bridge deck[D]. Xi'an: Chang'an University, 2001. (in Chinese).
    [18] 刘丽. 沥青路面层间处治技术研究[D]. 西安: 长安大学, 2008.

    LIU Li. Study on the technology performance of asphalt pavement layer interfaces[D]. Xi'an: Chang'an University, 2008. (in Chinese).
    [19] 田帅, 张铁志, 李野, 等. 加铺碳纤维桥面板与桥面铺装结构层间剪切试验研究[J]. 武汉理工大学学报, 2011, 33 (6): 80-84. doi: 10.3963/j.issn.1671-4431.2011.06.019

    TIAN Shuai, ZHANG Tie-zhi, LI Ye, et al. Research on shear test of the interface between bridge deck wit carbon fiber and deck pavement[J]. Journal of Wuhan University of Technology, 2011, 33 (6): 80-84. (in Chinese). doi: 10.3963/j.issn.1671-4431.2011.06.019
    [20] CHEN J S, HUANG C C. Effect of surface characteristics on bonding properties of bituminous tack coat[J]. Transportation Research Record, 2010 (2180): 142-149.
    [21] 张金荣. 长寿命沥青路面层间处治技术研究[D]. 西安: 长安大学, 2008.

    ZHANG Jin-rong. Study on technology of interlayer treatment for perpetual asphalt pavement[D]. Xi'an: Chang'an University, 2008. (in Chinese).
    [22] SANTAGATA F A, FERROTTI G, PARTL M N, et al. Statistical investigation of two different interlayer shear test methods[J]. Materials and Structures, 2009, 42 (6): 705-714. doi: 10.1617/s11527-008-9414-6
    [23] UZAN J, LIVNEH M, ESHED Y. Investigation of adhesion properties betweenasphaltic-concretelayers[C]∥TRB. Association of Asphalt Paving Technologists Proceedings. Washington DC: TRB, 1978: 495-521.
    [24] 徐鸥明, 韩森, 于静涛. 层间界面对混凝土桥面铺装结构性能的影响[J]. 长安大学学报: 自然科学版, 2009, 29 (5): 17-20, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200905005.htm

    XU Ou-ming, HAN Sen, YU Jing-tao. Effect of interlayer interface on structural performance of concrete bridge deck pavement[J]. Journal of Chang'an University: Natural Science Edition, 2009, 29 (5): 17-20, 53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200905005.htm
    [25] XU Qin-wu, ZHOU Qing-hua, MEDINA C, et al. Experimental and numerical analysis of a waterproofing adhesive layer used on concrete-bridge decks[J]. International Journal of Adhesion and Adhesives, 2009, 29 (5): 525-534. doi: 10.1016/j.ijadhadh.2008.12.001
    [26] YILDIRIM Y, SMIT A F, KORKMAZ A. Development of a laboratory test procedure to evaluate tack coat performance[J]. Turkish Journal of Engineering and Environmental Sciences, 2005, 29 (4): 195-205.
    [27] 冯德成, 宋宇. 沥青路面层间结合状态试验与评价方法研究[J]. 哈尔滨工业大学学报, 2007, 39 (4): 627-631. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200704027.htm

    FENG De-cheng, SONG Yu. Study of test and evaluation method on interfacial combining state of asphalt pavement[J]. Journal of Harbin Institute of Technology, 2007, 39 (4): 627-631. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200704027.htm
    [28] MO Lian-tong, HUURMAN M, WU Shao-peng, et al. Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen-stone adhesion and mortar[J]. Materials and Design, 2009, 30 (1): 170-179.
    [29] 李盛, 刘朝晖, 张景怡, 等. 刚柔复合式路面层间沥青材料路用性能试验评价[J]. 公路交通科技, 2013, 30 (11): 7-12, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201311002.htm

    LI Sheng, LIU Zhao-hui, ZHANG Jing-yi, et al. Test evaluation of pavement performance of interlaminar asphalt material for rigid-flexible composite pavement[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (11): 7-12, 67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201311002.htm
    [30] 纪伦, 李云良, 任俊达, 等. 桥面铺面防水粘结层胶结材料洒布量的确定方法[J]. 哈尔滨工业大学学报, 2014, 46 (4): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404010.htm

    JI Lun, LI Yun-liang, REN Jun-da, et al. Method of determining the spraying amount of waterproof binder for bridge deck pavement[J]. Journal of Harbin Institute of Technology, 2014, 46 (4): 57-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404010.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  174
  • PDF下载量:  569
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-18
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回