留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市轨道交通钢轨磨耗和裂纹萌生分析与选型建议

周宇 木东升 邝迪峰 郑晓峰 韩延彬

周宇, 木东升, 邝迪峰, 郑晓峰, 韩延彬. 城市轨道交通钢轨磨耗和裂纹萌生分析与选型建议[J]. 交通运输工程学报, 2018, 18(4): 82-89. doi: 10.19818/j.cnki.1671-1637.2018.04.009
引用本文: 周宇, 木东升, 邝迪峰, 郑晓峰, 韩延彬. 城市轨道交通钢轨磨耗和裂纹萌生分析与选型建议[J]. 交通运输工程学报, 2018, 18(4): 82-89. doi: 10.19818/j.cnki.1671-1637.2018.04.009
ZHOU Yu, MU Dong-sheng, KUANG Di-feng, ZHENG Xiao-feng, HAN Yan-bin. Analysis on rail wear and crack initiation and recommendation on rail selection in urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 82-89. doi: 10.19818/j.cnki.1671-1637.2018.04.009
Citation: ZHOU Yu, MU Dong-sheng, KUANG Di-feng, ZHENG Xiao-feng, HAN Yan-bin. Analysis on rail wear and crack initiation and recommendation on rail selection in urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 82-89. doi: 10.19818/j.cnki.1671-1637.2018.04.009

城市轨道交通钢轨磨耗和裂纹萌生分析与选型建议

doi: 10.19818/j.cnki.1671-1637.2018.04.009
基金项目: 

国家自然科学基金项目 51678445

道路与铁道工程安全保障省部共建教育部重点实验室开放课题 STKF201715

详细信息
    作者简介:

    周宇(1977-), 男, 山西太原人, 同济大学副教授, 工学博士, 从事轨道结构和轨道养修技术

  • 中图分类号: U491.51

Analysis on rail wear and crack initiation and recommendation on rail selection in urban rail transit

More Information
  • 摘要: 分析了基于能量密度法和临界平面法的滚动接触疲劳裂纹萌生预测理论与Archard法的磨耗预测理论, 提出了城市轨道交通钢轨滚动接触疲劳裂纹萌生和磨耗共存发展预测模型; 针对城市轨道交通常用的U71Mn热轧、U75V热轧和U75V热处理等3种不同硬度的钢轨, 预测其表面滚动接触疲劳裂纹的萌生寿命、相应的钢轨型面变化和磨耗发展率; 分析了3种硬度钢轨的疲劳裂纹萌生和磨耗发展特征; 基于安定极限理论, 结合城市轨道交通常见坡度和常用ER9型车轮, 从轮轨硬度匹配的角度提出了城市轨道交通的钢轨选型建议。研究结果表明: 随着硬度的增大, 钢轨滚动接触疲劳裂纹萌生寿命延长, 磨耗发展率降低, U75V热轧和U75V热处理钢轨的磨耗发展率分别比U71Mn热轧钢轨低3.2%和12.1%, 裂纹萌生寿命分别比U71Mn延长14.8%和31.1%;在城市轨道交通常用坡度情况下, 3种不同硬度的钢轨材料都处于弹性安定极限范围, 但随着坡度增大, 钢轨材料趋向于塑性安定极限; 考虑与ER9车轮的硬度匹配情况, 建议钢轨踏面较车轮踏面的硬度高些, ER9车轮与U75V热轧钢轨和U75V热处理钢轨的轮轨硬度比分别为0.87~1.04和0.71~0.84, 这2种钢轨均适合于中国的城市轨道交通系统。

     

  • 图  1  考虑磨耗的裂纹萌生预测流程

    Figure  1.  Prediction flow of crack initiation considering wear

    图  2  钢轨磨耗型面的发展

    Figure  2.  Evolution of rail worn profiles

    图  3  U75V热处理钢轨在裂纹萌生前的磨耗型面发展

    Figure  3.  Worn profile evolution of U75Vheat-treated rail before crack initiation

    图  4  三种钢轨在不同磨耗型面发展阶段时的磨耗发展率

    Figure  4.  Wear growth rates of three kinds of rails at different worn profile evolution phases

    图  5  U75V热处理钢轨疲劳损伤

    Figure  5.  Fatigue damage of U75Vheat-treated rail

    图  6  钢轨轨头累积疲劳损伤分布

    Figure  6.  Distribution of cumulative fatigue damage of rail head

    图  7  三种钢轨的疲劳损伤发展

    Figure  7.  Fatigue damage evolution of three kinds of rails

    图  8  不同坡度条件下3种钢轨材料的安定极限

    Figure  8.  Material shakedown limits of three kinds of rails with different gradients

    表  1  钢轨材料参数

    Table  1.   Parameters of rail materials

    下载: 导出CSV

    表  2  三种钢轨的平均磨耗发展率和疲劳裂纹萌生寿命

    Table  2.   Average wear growth rates and fatigue crack initiation lifes of three kinds of rails

    下载: 导出CSV
  • [1] KALOUSEK J, MAGEL E. Achieving a balance: the"magic"wear rate[J]. Railway Track and Structures, 1997, 95 (5): 50-53.
    [2] MAGEL E, RONEY M, KALOUSEK J, et al. The blending of theory and practice in modern rail grinding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26 (10): 921-929. doi: 10.1046/j.1460-2695.2003.00669.x
    [3] ZHOU Yu, WANG Shao-feng, WANG Tian-yi, et al. Field and laboratory investigation of the relationship between rail head check and wear in a heavy-haul railway[J]. Wear, 2014, 315 (1/2): 68-77.
    [4] FLETCHER D I, BEYNON J H. Equilibrium of crack growth and wear rates during unlubricated rolling-sliding contact of pearlitic rail steel[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2000, 214 (2): 93-105. doi: 10.1243/0954409001531360
    [5] ZHONG W, HU J J, SHEN P, et al. Experimental investigation between rolling contact fatigue and wear of high-speed and heavy-haul railway and selection of rail material[J]. Wear, 2011, 271 (9/10): 2485-2493.
    [6] FRANKLIN F J, WIDIYARTA I, KAPOOR A. Computer simulation of wear and rolling contact fatigue[J]. Wear, 2001, 251 (1-12): 949-955. doi: 10.1016/S0043-1648(01)00732-3
    [7] FRANKLIN F J, CHUNG T, KAPOOR A. Ratcheting and fatigue-led wear in rail-wheel contact[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26 (10): 949-955. doi: 10.1046/j.1460-2695.2003.00703.x
    [8] ALWAHDI F, FRANKLIN F J, KAPOOR A. The effect of partial slip on the wear rate of rails[J]. Wear, 2005, 258 (7/8): 1031-1037.
    [9] FRANKLIN F J, GARNHAM J E, FLETCHER D I, et al. Modelling rail steel microstructure and its effect on crack initiation[J]. Wear, 2008, 265 (9/10): 1332-1341.
    [10] WIDIYARTA I M, FRANKLIN F J, KAPOOR A. Modelling thermal effects in ratcheting-led wear and rolling contact fatigue[J]. Wear, 2008, 265 (9/10): 1325-1331.
    [11] TRUMMER G, MARTE C, DIETMAIER P, et al. Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account[J]. Wear, 2016, 352/353: 136-145. doi: 10.1016/j.wear.2016.02.008
    [12] TRUMMER G, MARTE C, SCHERIAU S, et al. Modeling wear and rolling contact fatigue: parametric study and experimental results[J]. Wear, 2016, 366/367: 71-77. doi: 10.1016/j.wear.2016.04.024
    [13] DAVES W, KUBIN W, SCHERIAU S, et al. A finite element model to simulate the physical mechanisms of wear and crack initiation in wheel/rail contact[J]. Wear, 2016, 366/367: 78-83. doi: 10.1016/j.wear.2016.05.027
    [14] DIRKS B, ENBLOM R. Prediction model for wheel profile wear and rolling contact fatigue[J]. Wear, 2011, 271 (1/2): 210-217.
    [15] ZHOU Yu, HAN Yan-bin, MU Dong-sheng, et al. Prediction of the coexistence of rail head check initiation and wear growth[J]. International Journal of Fatigue, 2018, 112: 289-300. doi: 10.1016/j.ijfatigue.2018.03.027
    [16] 李伟, 曾全君, 朱士友, 等. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报, 2015, 15 (1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005

    LI Wei, ZENG Quan-jun, ZHU Shi-you, et al. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (1): 34-42. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2015.01.005
    [17] 刘洋, 蒋硕, 吴亚平, 等. 剥离掉块对轮轨滑动接触热弹塑性的影响[J]. 交通运输工程学报, 2016, 16 (2): 46-55. http://transport.chd.edu.cn/article/id/201602006

    LIU Yang, JIANG Shuo, WU Ya-ping, et al. Effects of spallation on rail thermo-elasto-plasticity in wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (2): 46-55. (in Chinese). http://transport.chd.edu.cn/article/id/201602006
    [18] ZHOU Yu, YU Miao, JIANG Jun-nan. Effects of rail hardness on rail wear and head check initiation[J]. Transportation Research Record, 2016 (2545): 55-65.
    [19] 周宇, 张杰, 王少峰, 等. 考虑磨耗的钢轨疲劳裂纹萌生寿命预测仿真[J]. 铁道学报, 2016, 38 (7): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607013.htm

    ZHOU Yu, ZHANG Jie, WANG Shao-feng, et al. Simulation on rail head check initiation life prediction considering rail wear[J]. Journal of the China Railway Society, 2016, 38 (7): 91-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607013.htm
    [20] KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11 (1): 1-13. doi: 10.1080/00423118208968684
    [21] DEARIZON J, VERLINDEN O, DEHOMBREUX P. Prediction of wheel wear in urban railway transport: comparison of existing models[J]. Vehicle System Dynamics, 2007, 45 (9): 849-866. doi: 10.1080/00423110601149335
    [22] AKAMA M. Development of finite element model for analysis of rolling contact fatigue cracks in wheel/rail systems[J]. Quarterly Report of RTRI, 2007, 48 (1): 8-14. doi: 10.2219/rtriqr.48.8
    [23] ONALO, CANADINCD, SEHITOGLUH, etal. Investigation of rolling contact crack initiation in bainitic and pearlitic rail steels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2012, 35 (11): 985-997. doi: 10.1111/j.1460-2695.2012.01686.x
    [24] MINER M A. Cumulative damage in fatigue[J]. Applied Mechanics—Transactions of the ASME, 1945, 13 (3): 159-164.
    [25] 曾向荣, 张格妍, 赵晓华. 关于城市轨道交通钢轨选型的探讨和建议[J]. 都市快轨交通, 2007, 20 (2): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG200702013.htm

    ZENG Xiang-rong, ZHANG Ge-yan, ZHAO Xiao-hua. Analysis and proposals on rail type selection for urban rail transit[J]. Urban Rapid Rail Transit, 2007, 20 (2): 51-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG200702013.htm
    [26] 金伟, 栾治国, 刘小松. 杭州地铁1号线项目的轮轨硬度匹配及车轮材质选用[J]. 铁道车辆, 2012, 50 (7): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201207010.htm

    JIN Wei, LUAN Zhi-guo, LIU Xiao-song. The wheel-rail hardness matching and wheel material selection for the project of Hangzhou Metro No. 1Line[J]. Rolling Stock, 2012, 50 (7): 27-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201207010.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  790
  • HTML全文浏览量:  166
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回